Sort by:
Page 43 of 1411408 results

Random forest-based out-of-distribution detection for robust lung cancer segmentation

Aneesh Rangnekar, Harini Veeraraghavan

arxiv logopreprintAug 26 2025
Accurate detection and segmentation of cancerous lesions from computed tomography (CT) scans is essential for automated treatment planning and cancer treatment response assessment. Transformer-based models with self-supervised pretraining can produce reliably accurate segmentation from in-distribution (ID) data but degrade when applied to out-of-distribution (OOD) datasets. We address this challenge with RF-Deep, a random forest classifier that utilizes deep features from a pretrained transformer encoder of the segmentation model to detect OOD scans and enhance segmentation reliability. The segmentation model comprises a Swin Transformer encoder, pretrained with masked image modeling (SimMIM) on 10,432 unlabeled 3D CT scans covering cancerous and non-cancerous conditions, with a convolution decoder, trained to segment lung cancers in 317 3D scans. Independent testing was performed on 603 3D CT public datasets that included one ID dataset and four OOD datasets comprising chest CTs with pulmonary embolism (PE) and COVID-19, and abdominal CTs with kidney cancers and healthy volunteers. RF-Deep detected OOD cases with a FPR95 of 18.26%, 27.66%, and less than 0.1% on PE, COVID-19, and abdominal CTs, consistently outperforming established OOD approaches. The RF-Deep classifier provides a simple and effective approach to enhance reliability of cancer segmentation in ID and OOD scenarios.

PRISM: A Framework Harnessing Unsupervised Visual Representations and Textual Prompts for Explainable MACE Survival Prediction from Cardiac Cine MRI

Haoyang Su, Jin-Yi Xiang, Shaohao Rui, Yifan Gao, Xingyu Chen, Tingxuan Yin, Xiaosong Wang, Lian-Ming Wu

arxiv logopreprintAug 26 2025
Accurate prediction of major adverse cardiac events (MACE) remains a central challenge in cardiovascular prognosis. We present PRISM (Prompt-guided Representation Integration for Survival Modeling), a self-supervised framework that integrates visual representations from non-contrast cardiac cine magnetic resonance imaging with structured electronic health records (EHRs) for survival analysis. PRISM extracts temporally synchronized imaging features through motion-aware multi-view distillation and modulates them using medically informed textual prompts to enable fine-grained risk prediction. Across four independent clinical cohorts, PRISM consistently surpasses classical survival prediction models and state-of-the-art (SOTA) deep learning baselines under internal and external validation. Further clinical findings demonstrate that the combined imaging and EHR representations derived from PRISM provide valuable insights into cardiac risk across diverse cohorts. Three distinct imaging signatures associated with elevated MACE risk are uncovered, including lateral wall dyssynchrony, inferior wall hypersensitivity, and anterior elevated focus during diastole. Prompt-guided attribution further identifies hypertension, diabetes, and smoking as dominant contributors among clinical and physiological EHR factors.

Machine Learning-Driven radiomics on 18 F-FDG PET for glioma diagnosis: a systematic review and meta-analysis.

Shahriari A, Ghazanafar Ahari S, Mousavi A, Sadeghi M, Abbasi M, Hosseinpour M, Mir A, Zohouri Zanganeh D, Gharedaghi H, Ezati S, Sareminia A, Seyedi D, Shokouhfar M, Darzi A, Ghaedamini A, Zamani S, Khosravi F, Asadi Anar M

pubmed logopapersAug 26 2025
Machine learning (ML) applied to radiomics has revolutionized neuro-oncological imaging, yet the diagnostic performance of ML models based specifically on ^18F-FDG PET features in glioma remains poorly characterized. To systematically evaluate and quantitatively synthesize the diagnostic accuracy of ML models trained on ^18F-FDG PET radiomics for glioma classification. We conducted a PRISMA-compliant systematic review and meta-analysis registered on OSF ( https://doi.org/10.17605/OSF.IO/XJG6P ). PubMed, Scopus, and Web of Science were searched up to January 2025. Studies were included if they applied ML algorithms to ^18F-FDG PET radiomic features for glioma classification and reported at least one performance metric. Data extraction included demographics, imaging protocols, feature types, ML models, and validation design. Meta-analysis was performed using random-effects models with pooled estimates of accuracy, sensitivity, specificity, AUC, F1 score, and precision. Heterogeneity was explored via meta-regression and Galbraith plots. Twelve studies comprising 2,321 patients were included. Pooled diagnostic metrics were: accuracy 92.6% (95% CI: 91.3-93.9%), AUC 0.95 (95% CI: 0.94-0.95), sensitivity 85.4%, specificity 89.7%, F1 score 0.78, and precision 0.90. Heterogeneity was high across all domains (I² >75%). Meta-regression identified ML model type and validation strategy as partial moderators. Models using CNNs or PET/MRI integration achieved superior performance. ML models based on ^18F-FDG PET radiomics demonstrate strong and balanced diagnostic performance for glioma classification. However, methodological heterogeneity underscores the need for standardized pipelines, external validation, and transparent reporting before clinical integration.

Displacement-Guided Anisotropic 3D-MRI Super-Resolution with Warp Mechanism.

Wang L, Liu S, Yu Z, Du J, Li Y

pubmed logopapersAug 25 2025
Enhancing the resolution of Magnetic Resonance Imaging (MRI) through super-resolution (SR) reconstruction is crucial for boosting diagnostic precision. However, current SR methods primarily rely on single LR images or multi-contrast features, limiting detail restoration. Inspired by video frame interpolation, this work utilizes the spatiotemporal correlations between adjacent slices to reformulate the SR task of anisotropic 3D-MRI image into the generation of new high-resolution (HR) slices between adjacent 2D slices. The generated SR slices are subsequently combined with the HR adjacent slices to create a new HR 3D-MRI image. We propose a innovative network architecture termed DGWMSR, comprising a backbone network and a feature supplement module (FSM). The backbone's core innovations include the displacement former block (DFB) module, which independently extracts structural and displacement features, and the maskdisplacement vector network (MDVNet) which combines with Warp mechanism to facilitate edge pixel detailing. The DFB integrates the inter-slice attention (ISA) mechanism into the Transformer, effectively minimizing the mutual interference between the two types of features and mitigating volume effects during reconstruction. Additionally, the FSM module combines self-attention with feed-forward neural network, which emphasizes critical details derived from the backbone architecture. Experimental results demonstrate the DGWMSR network outperforms current MRI SR methods on Kirby21, ANVIL-adult, and MSSEG datasets. Our code has been made publicly available on GitHub at https://github.com/Dohbby/DGWMSR.

UniSino: Physics-Driven Foundational Model for Universal CT Sinogram Standardization

Xingyu Ai, Shaoyu Wang, Zhiyuan Jia, Ao Xu, Hongming Shan, Jianhua Ma, Qiegen Liu

arxiv logopreprintAug 25 2025
During raw-data acquisition in CT imaging, diverse factors can degrade the collected sinograms, with undersampling and noise leading to severe artifacts and noise in reconstructed images and compromising diagnostic accuracy. Conventional correction methods rely on manually designed algorithms or fixed empirical parameters, but these approaches often lack generalizability across heterogeneous artifact types. To address these limitations, we propose UniSino, a foundation model for universal CT sinogram standardization. Unlike existing foundational models that operate in image domain, UniSino directly standardizes data in the projection domain, which enables stronger generalization across diverse undersampling scenarios. Its training framework incorporates the physical characteristics of sinograms, enhancing generalization and enabling robust performance across multiple subtasks spanning four benchmark datasets. Experimental results demonstrate thatUniSino achieves superior reconstruction quality both single and mixed undersampling case, demonstrating exceptional robustness and generalization in sinogram enhancement for CT imaging. The code is available at: https://github.com/yqx7150/UniSino.

Evaluating the diagnostic accuracy of AI in ischemic and hemorrhagic stroke: A comprehensive meta-analysis.

Gul N, Fatima Y, Shaikh HS, Raheel M, Ali A, Hasan SU

pubmed logopapersAug 25 2025
Stroke poses a significant health challenge, with ischemic and hemorrhagic subtypes requiring timely and accurate diagnosis for effective management. Traditional imaging techniques like CT have limitations, particularly in early ischemic stroke detection. Recent advancements in artificial intelligence (AI) offer potential improvements in stroke diagnosis by enhancing imaging interpretation. This meta-analysis aims to evaluate the diagnostic accuracy of AI systems compared to human experts in detecting ischemic and hemorrhagic strokes. The review was conducted following PRISMA-DTA guidelines. Studies included stroke patients evaluated in emergency settings using AI-Based models on CT or MRI imaging, with human radiologists as the reference standard. Databases searched were MEDLINE, Scopus, and Cochrane Central, up to January 1, 2024. The primary outcome measured was diagnostic accuracy, including sensitivity, specificity, and AUROC and the methodological quality was assessed using QUADAS-2. Nine studies met the inclusion criteria and were included. The pooled analysis for ischemic stroke revealed a mean sensitivity of 86.9% (95% CI: 69.9%-95%) and specificity of 88.6% (95% CI: 77.8%-94.5%). For hemorrhagic stroke, the pooled sensitivity and specificity were 90.6% (95% CI: 86.2%-93.6%) and 93.9% (95% CI: 87.6%-97.2%), respectively. The diagnostic odds ratios indicated strong diagnostic efficacy, particularly for hemorrhagic stroke (DOR: 148.8, 95% CI: 79.9-277.2). AI-Based systems exhibit high diagnostic accuracy for both ischemic and hemorrhagic strokes, closely approaching that of human radiologists. These findings underscore the potential of AI to improve diagnostic precision and expedite clinical decision-making in acute stroke settings.

Radiomics-Driven Diffusion Model and Monte Carlo Compression Sampling for Reliable Medical Image Synthesis.

Zhao J, Li S

pubmed logopapersAug 25 2025
Reliable medical image synthesis is crucial for clinical applications and downstream tasks, where high-quality anatomical structure and predictive confidence are essential. Existing studies have made significant progress by embedding prior conditional knowledge, such as conditional images or textual information, to synthesize natural images. However, medical image synthesis remains a challenging task due to: 1) Data scarcity: High-quality medical text prompt are extremely rare and require specialized expertise. 2) Insufficient uncertainty estimation: The uncertainty estimation is critical for evaluating the confidence of reliable medical image synthesis. This paper presents a novel approach for medical image synthesis, driven by radiomics prompts and combined with Monte Carlo Compression Sampling (MCCS) to ensure reliability. For the first time, our method leverages clinically focused radiomics prompts to condition the generation process, guiding the model to produce reliable medical images. Furthermore, the innovative MCCS algorithm employs Monte Carlo methods to randomly select and compress sampling steps within the denoising diffusion implicit models (DDIM), enabling efficient uncertainty quantification. Additionally, we introduce a MambaTrans architecture to model long-range dependencies in medical images and embed prior conditions (e.g., radiomics prompts). Extensive experiments on benchmark medical imaging datasets demonstrate that our approach significantly improves image quality and reliability, outperforming SoTA methods in both qualitative and quantitative evaluations.

Emerging Semantic Segmentation from Positive and Negative Coarse Label Learning

Le Zhang, Fuping Wu, Arun Thirunavukarasu, Kevin Bronik, Thomas Nichols, Bartlomiej W. Papiez

arxiv logopreprintAug 25 2025
Large annotated datasets are vital for training segmentation models, but pixel-level labeling is time-consuming, error-prone, and often requires scarce expert annotators, especially in medical imaging. In contrast, coarse annotations are quicker, cheaper, and easier to produce, even by non-experts. In this paper, we propose to use coarse drawings from both positive (target) and negative (background) classes in the image, even with noisy pixels, to train a convolutional neural network (CNN) for semantic segmentation. We present a method for learning the true segmentation label distributions from purely noisy coarse annotations using two coupled CNNs. The separation of the two CNNs is achieved by high fidelity with the characters of the noisy training annotations. We propose to add a complementary label learning that encourages estimating negative label distribution. To illustrate the properties of our method, we first use a toy segmentation dataset based on MNIST. We then present the quantitative results of experiments using publicly available datasets: Cityscapes dataset for multi-class segmentation, and retinal images for medical applications. In all experiments, our method outperforms state-of-the-art methods, particularly in the cases where the ratio of coarse annotations is small compared to the given dense annotations.

Efficient 3D Biomedical Image Segmentation by Parallelly Multiscale Transformer-CNN Aggregation Network.

Liu W, He Y, Man T, Zhu F, Chen Q, Huang Y, Feng X, Li B, Wan Y, He J, Deng S

pubmed logopapersAug 25 2025
Accurate and automated segmentation of 3D biomedical images is a sophisticated imperative in clinical diagnosis, imaging-guided surgery, and prognosis judgment. Although the burgeoning of deep learning technologies has fostered smart segmentators, the successive and simultaneous garnering global and local features still remains challenging, which is essential for an exact and efficient imageological assay. To this end, a segmentation solution dubbed the mixed parallel shunted transformer (MPSTrans) is developed here, highlighting 3D-MPST blocks in a U-form framework. It enabled not only comprehensive characteristic capture and multiscale slice synchronization but also deep supervision in the decoder to facilitate the fetching of hierarchical representations. Performing on an unpublished colon cancer data set, this model achieved an impressive increase in dice similarity coefficient (DSC) and a 1.718 mm decease in Hausdorff distance at 95% (HD95), alongside a substantial shrink of computational load of 56.7% in giga floating-point operations per second (GFLOPs). Meanwhile, MPSTrans outperforms other mainstream methods (Swin UNETR, UNETR, nnU-Net, PHTrans, and 3D U-Net) on three public multiorgan (aorta, gallbladder, kidney, liver, pancreas, spleen, stomach, etc.) and multimodal (CT, PET-CT, and MRI) data sets of medical segmentation decathlon (MSD) brain tumor, multiatlas labeling beyond cranial vault (BCV), and automated cardiac diagnosis challenge (ACDC), accentuating its adaptability. These results reflect the potential of MPSTrans to advance the state-of-the-art in biomedical imaging analysis, which would offer a robust tool for enhanced diagnostic capacity.

Benchmarking Class Activation Map Methods for Explainable Brain Hemorrhage Classification on Hemorica Dataset

Z. Rafati, M. Hoseyni, J. Khoramdel, A. Nikoofard

arxiv logopreprintAug 25 2025
Explainable Artificial Intelligence (XAI) has become an essential component of medical imaging research, aiming to increase transparency and clinical trust in deep learning models. This study investigates brain hemorrhage diagnosis with a focus on explainability through Class Activation Mapping (CAM) techniques. A pipeline was developed to extract pixellevel segmentation and detection annotations from classification models using nine state-of-the-art CAM algorithms, applied across multiple network stages, and quantitatively evaluated on the Hemorica dataset, which uniquely provides both slice-level labels and high-quality segmentation masks. Metrics including Dice, IoU, and pixel-wise overlap were employed to benchmark CAM variants. Results show that the strongest localization performance occurred at stage 5 of EfficientNetV2S, with HiResCAM yielding the highest bounding-box alignment and AblationCAM achieving the best pixel-level Dice (0.57) and IoU (0.40), representing strong accuracy given that models were trained solely for classification without segmentation supervision. To the best of current knowledge, this is among the f irst works to quantitatively compare CAM methods for brain hemorrhage detection, establishing a reproducible benchmark and underscoring the potential of XAI-driven pipelines for clinically meaningful AI-assisted diagnosis.
Page 43 of 1411408 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.