Sort by:
Page 43 of 92915 results

Orbital CT deep learning models in thyroid eye disease rival medical specialists' performance in optic neuropathy prediction in a quaternary referral center and revealed impact of the bony walls.

Kheok SW, Hu G, Lee MH, Wong CP, Zheng K, Htoon HM, Lei Z, Tan ASM, Chan LL, Ooi BC, Seah LL

pubmed logopapersJul 1 2025
To develop and evaluate orbital CT deep learning (DL) models in optic neuropathy (ON) prediction in patients diagnosed with thyroid eye disease (TED), using partial versus entire 2D versus 3D images for input. Patients with TED ±ON diagnosed at a quaternary-level practice and who underwent orbital CT between 2002 and 2017 were included. DL models were developed using annotated CT data. The DL models were used to evaluate the hold-out test set. ON classification performances were compared between models and medical specialists, and saliency maps applied to randomized cases. 36/252 orbits in 126 TED patients (mean age, 51 years; 81 women) had clinically confirmed ON. With 2D image input for ON prediction, our models achieved (a) sensitivity 89%, AUC 0.86 on entire coronal orbital apex including bony walls, and (b) specificity 92%, AUC 0.79 on partial axial lateral orbital wall only annotations. ON classification performance was similar (<i>p</i> = 0.58) between DL model and medical specialists. DL models trained on 2D CT annotations rival medical specialists in ON classification, with potential to objectively enhance clinical triage for sight-saving intervention and incorporate model variants in the workflow to harness differential performance metrics.

Intraindividual Comparison of Image Quality Between Low-Dose and Ultra-Low-Dose Abdominal CT With Deep Learning Reconstruction and Standard-Dose Abdominal CT Using Dual-Split Scan.

Lee TY, Yoon JH, Park JY, Park SH, Kim H, Lee CM, Choi Y, Lee JM

pubmed logopapersJul 1 2025
The aim of this study was to intraindividually compare the conspicuity of focal liver lesions (FLLs) between low- and ultra-low-dose computed tomography (CT) with deep learning reconstruction (DLR) and standard-dose CT with model-based iterative reconstruction (MBIR) from a single CT using dual-split scan in patients with suspected liver metastasis via a noninferiority design. This prospective study enrolled participants who met the eligibility criteria at 2 tertiary hospitals in South Korea from June 2022 to January 2023. The criteria included ( a ) being aged between 20 and 85 years and ( b ) having suspected or known liver metastases. Dual-source CT scans were conducted, with the standard radiation dose divided in a 2:1 ratio between tubes A and B (67% and 33%, respectively). The voltage settings of 100/120 kVp were selected based on the participant's body mass index (<30 vs ≥30 kg/m 2 ). For image reconstruction, MBIR was utilized for standard-dose (100%) images, whereas DLR was employed for both low-dose (67%) and ultra-low-dose (33%) images. Three radiologists independently evaluated FLL conspicuity, the probability of metastasis, and subjective image quality using a 5-point Likert scale, in addition to quantitative signal-to-noise and contrast-to-noise ratios. The noninferiority margins were set at -0.5 for conspicuity and -0.1 for detection. One hundred thirty-three participants (male = 58, mean body mass index = 23.0 ± 3.4 kg/m 2 ) were included in the analysis. The low- and ultra-low- dose had a lower radiation dose than the standard-dose (median CT dose index volume: 3.75, 1.87 vs 5.62 mGy, respectively, in the arterial phase; 3.89, 1.95 vs 5.84 in the portal venous phase, P < 0.001 for all). Median FLL conspicuity was lower in the low- and ultra-low-dose scans compared with the standard-dose (3.0 [interquartile range, IQR: 2.0, 4.0], 3.0 [IQR: 1.0, 4.0] vs 3.0 [IQR: 2.0, 4.0] in the arterial phase; 4.0 [IQR: 1.0, 5.0], 3.0 [IQR: 1.0, 4.0] vs 4.0 [IQR: 2.0, 5.0] in the portal venous phases), yet within the noninferiority margin ( P < 0.001 for all). FLL detection was also lower but remained within the margin (lesion detection rate: 0.772 [95% confidence interval, CI: 0.727, 0.812], 0.754 [0.708, 0.795], respectively) compared with the standard-dose (0.810 [95% CI: 0.770, 0.844]). Sensitivity for liver metastasis differed between the standard- (80.6% [95% CI: 76.0, 84.5]), low-, and ultra-low-doses (75.7% [95% CI: 70.2, 80.5], 73.7 [95% CI: 68.3, 78.5], respectively, P < 0.001 for both), whereas specificity was similar ( P > 0.05). Low- and ultra-low-dose CT with DLR showed noninferior FLL conspicuity and detection compared with standard-dose CT with MBIR. Caution is needed due to a potential decrease in sensitivity for metastasis ( clinicaltrials.gov/NCT05324046 ).

Response prediction for neoadjuvant treatment in locally advanced rectal cancer patients-improvement in decision-making: A systematic review.

Boldrini L, Charles-Davies D, Romano A, Mancino M, Nacci I, Tran HE, Bono F, Boccia E, Gambacorta MA, Chiloiro G

pubmed logopapersJul 1 2025
Predicting pathological complete response (pCR) from pre or post-treatment features could be significant in improving the process of making clinical decisions and providing a more personalized treatment approach for better treatment outcomes. However, the lack of external validation of predictive models, missing in several published articles, is a major issue that can potentially limit the reliability and applicability of predictive models in clinical settings. Therefore, this systematic review described different externally validated methods of predicting response to neoadjuvant chemoradiotherapy (nCRT) in locally advanced rectal cancer (LARC) patients and how they could improve clinical decision-making. An extensive search for eligible articles was performed on PubMed, Cochrane, and Scopus between 2018 and 2023, using the keywords: (Response OR outcome) prediction AND (neoadjuvant OR chemoradiotherapy) treatment in 'locally advanced Rectal Cancer'. (i) Studies including patients diagnosed with LARC (T3/4 and N- or any T and N+) by pre-medical imaging and pathological examination or as stated by the author (ii) Standardized nCRT completed. (iii) Treatment with long or short course radiotherapy. (iv) Studies reporting on the prediction of response to nCRT with pathological complete response (pCR) as the primary outcome. (v) Studies reporting external validation results for response prediction. (vi) Regarding language restrictions, only articles in English were accepted. (i) We excluded case report studies, conference abstracts, reviews, studies reporting patients with distant metastases at diagnosis. (ii) Studies reporting response prediction with only internally validated approaches. Three researchers (DC-D, FB, HT) independently reviewed and screened titles and abstracts of all articles retrieved after de-duplication. Possible disagreements were resolved through discussion among the three researchers. If necessary, three other researchers (LB, GC, MG) were consulted to make the final decision. The extraction of data was performed using the CHecklist for critical Appraisal and data extraction for systematic Reviews of prediction Modelling Studies (CHARMS) template and quality assessment was done using the Prediction model Risk Of Bias Assessment Tool (PROBAST). A total of 4547 records were identified from the three databases. After excluding 392 duplicate results, 4155 records underwent title and abstract screening. Three thousand and eight hundred articles were excluded after title and abstract screening and 355 articles were retrieved. Out of the 355 retrieved articles, 51 studies were assessed for eligibility. Nineteen reports were then excluded due to lack of reports on external validation, while 4 were excluded due to lack of evaluation of pCR as the primary outcome. Only Twenty-eight articles were eligible and included in this systematic review. In terms of quality assessment, 89 % of the models had low concerns in the participants domain, while 11 % had an unclear rating. 96 % of the models were of low concern in both the predictors and outcome domains. The overall rating showed high applicability potential of the models with 82 % showing low concern, while 18 % were deemed unclear. Most of the external validated techniques showed promising performances and the potential to be applied in clinical settings, which is a crucial step towards evidence-based medicine. However, more studies focused on the external validations of these models in larger cohorts is necessary to ensure that they can reliably predict outcomes in diverse populations.

<sup>18</sup>F-FDG dose reduction using deep learning-based PET reconstruction.

Akita R, Takauchi K, Ishibashi M, Kondo S, Ono S, Yokomachi K, Ochi Y, Kiguchi M, Mitani H, Nakamura Y, Awai K

pubmed logopapersJul 1 2025
A deep learning-based image reconstruction (DLR) algorithm that can reduce the statistical noise has been developed for PET/CT imaging. It may reduce the administered dose of <sup>18</sup>F-FDG and minimize radiation exposure while maintaining diagnostic quality. This retrospective study evaluated whether the injected <sup>18</sup>F-FDG dose could be reduced by applying DLR to PET images. To this aim, we compared the quantitative image quality metrics and the false-positive rate between DLR with a reduced <sup>18</sup>F-FDG dose and Ordered Subsets Expectation Maximization (OSEM) with a standard dose. This study included 90 oncology patients who underwent <sup>18</sup>F-FDG PET/CT. They were divided into 3 groups (30 patients each): group A (<sup>18</sup>F-FDG dose per body weight [BW]: 2.00-2.99 MBq/kg; PET image reconstruction: DLR), group B (3.00-3.99 MBq/kg; DLR), and group C (standard dose group; 4.00-4.99 MBq/kg; OSEM). The evaluation was performed using the signal-to-noise ratio (SNR), target-to-background ratio (TBR), and false-positive rate. DLR yielded significantly higher SNRs in groups A and B than group C (p < 0.001). There was no significant difference in the TBR between groups A and C, and between groups B and C (p = 0.983 and 0.605, respectively). In group B, more than 80% of patients weighing less than 75 kg had at most one false positive result. In contrast, in group B patients weighing 75 kg or more, as well as in group A, less than 80% of patients had at most one false-positives. Our findings suggest that the injected <sup>18</sup>F-FDG dose can be reduced to 3.0 MBq/kg in patients weighing less than 75 kg by applying DLR. Compared to the recommended dose in the European Association of Nuclear Medicine (EANM) guidelines for 90 s per bed position (4.7 MBq/kg), this represents a dose reduction of 36%. Further optimization of DLR algorithms is required to maintain comparable diagnostic accuracy in patients weighing 75 kg or more.

Robust and generalizable artificial intelligence for multi-organ segmentation in ultra-low-dose total-body PET imaging: a multi-center and cross-tracer study.

Wang H, Qiao X, Ding W, Chen G, Miao Y, Guo R, Zhu X, Cheng Z, Xu J, Li B, Huang Q

pubmed logopapersJul 1 2025
Positron Emission Tomography (PET) is a powerful molecular imaging tool that visualizes radiotracer distribution to reveal physiological processes. Recent advances in total-body PET have enabled low-dose, CT-free imaging; however, accurate organ segmentation using PET-only data remains challenging. This study develops and validates a deep learning model for multi-organ PET segmentation across varied imaging conditions and tracers, addressing critical needs for fully PET-based quantitative analysis. This retrospective study employed a 3D deep learning-based model for automated multi-organ segmentation on PET images acquired under diverse conditions, including low-dose and non-attenuation-corrected scans. Using a dataset of 798 patients from multiple centers with varied tracers, model robustness and generalizability were evaluated via multi-center and cross-tracer tests. Ground-truth labels for 23 organs were generated from CT images, and segmentation accuracy was assessed using the Dice similarity coefficient (DSC). In the multi-center dataset from four different institutions, our model achieved average DSC values of 0.834, 0.825, 0.819, and 0.816 across varying dose reduction factors and correction conditions for FDG PET images. In the cross-tracer dataset, the model reached average DSC values of 0.737, 0.573, 0.830, 0.661, and 0.708 for DOTATATE, FAPI, FDG, Grazytracer, and PSMA, respectively. The proposed model demonstrated effective, fully PET-based multi-organ segmentation across a range of imaging conditions, centers, and tracers, achieving high robustness and generalizability. These findings underscore the model's potential to enhance clinical diagnostic workflows by supporting ultra-low dose PET imaging. Not applicable. This is a retrospective study based on collected data, which has been approved by the Research Ethics Committee of Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine.

Using deep feature distances for evaluating the perceptual quality of MR image reconstructions.

Adamson PM, Desai AD, Dominic J, Varma M, Bluethgen C, Wood JP, Syed AB, Boutin RD, Stevens KJ, Vasanawala S, Pauly JM, Gunel B, Chaudhari AS

pubmed logopapersJul 1 2025
Commonly used MR image quality (IQ) metrics have poor concordance with radiologist-perceived diagnostic IQ. Here, we develop and explore deep feature distances (DFDs)-distances computed in a lower-dimensional feature space encoded by a convolutional neural network (CNN)-as improved perceptual IQ metrics for MR image reconstruction. We further explore the impact of distribution shifts between images in the DFD CNN encoder training data and the IQ metric evaluation. We compare commonly used IQ metrics (PSNR and SSIM) to two "out-of-domain" DFDs with encoders trained on natural images, an "in-domain" DFD trained on MR images alone, and two domain-adjacent DFDs trained on large medical imaging datasets. We additionally compare these with several state-of-the-art but less commonly reported IQ metrics, visual information fidelity (VIF), noise quality metric (NQM), and the high-frequency error norm (HFEN). IQ metric performance is assessed via correlations with five expert radiologist reader scores of perceived diagnostic IQ of various accelerated MR image reconstructions. We characterize the behavior of these IQ metrics under common distortions expected during image acquisition, including their sensitivity to acquisition noise. All DFDs and HFEN correlate more strongly with radiologist-perceived diagnostic IQ than SSIM, PSNR, and other state-of-the-art metrics, with correlations being comparable to radiologist inter-reader variability. Surprisingly, out-of-domain DFDs perform comparably to in-domain and domain-adjacent DFDs. A suite of IQ metrics, including DFDs and HFEN, should be used alongside commonly-reported IQ metrics for a more holistic evaluation of MR image reconstruction perceptual quality. We also observe that general vision encoders are capable of assessing visual IQ even for MR images.

Diffusion-driven multi-modality medical image fusion.

Qu J, Huang D, Shi Y, Liu J, Tang W

pubmed logopapersJul 1 2025
Multi-modality medical image fusion (MMIF) technology utilizes the complementarity of different modalities to provide more comprehensive diagnostic insights for clinical practice. Existing deep learning-based methods often focus on extracting the primary information from individual modalities while ignoring the correlation of information distribution across different modalities, which leads to insufficient fusion of image details and color information. To address this problem, a diffusion-driven MMIF method is proposed to leverage the information distribution relationship among multi-modality images in the latent space. To better preserve the complementary information from different modalities, a local and global network (LAGN) is suggested. Additionally, a loss strategy is designed to establish robust constraints among diffusion-generated images, original images, and fused images. This strategy supervises the training process and prevents information loss in fused images. The experimental results demonstrate that the proposed method surpasses state-of-the-art image fusion methods in terms of unsupervised metrics on three datasets: MRI/CT, MRI/PET, and MRI/SPECT images. The proposed method successfully captures rich details and color information. Furthermore, 16 doctors and medical students were invited to evaluate the effectiveness of our method in assisting clinical diagnosis and treatment.

Prediction of adverse pathology in prostate cancer using a multimodal deep learning approach based on [<sup>18</sup>F]PSMA-1007 PET/CT and multiparametric MRI.

Lin H, Yao F, Yi X, Yuan Y, Xu J, Chen L, Wang H, Zhuang Y, Lin Q, Xue Y, Yang Y, Pan Z

pubmed logopapersJul 1 2025
Accurate prediction of adverse pathology (AP) in prostate cancer (PCa) patients is crucial for formulating effective treatment strategies. This study aims to develop and evaluate a multimodal deep learning model based on [<sup>18</sup>F]PSMA-1007 PET/CT and multiparametric MRI (mpMRI) to predict the presence of AP, and investigate whether the model that integrates [<sup>18</sup>F]PSMA-1007 PET/CT and mpMRI outperforms the individual PET/CT or mpMRI models in predicting AP. 341 PCa patients who underwent radical prostatectomy (RP) with mpMRI and PET/CT scans were retrospectively analyzed. We generated deep learning signature from mpMRI and PET/CT with a multimodal deep learning model (MPC) based on convolutional neural networks and transformer, which was subsequently incorporated with clinical characteristics to construct an integrated model (MPCC). These models were compared with clinical models and single mpMRI or PET/CT models. The MPCC model showed the best performance in predicting AP (AUC, 0.955 [95% CI: 0.932-0.975]), which is higher than MPC model (AUC, 0.930 [95% CI: 0.901-0.955]). The performance of the MPC model is better than that of single PET/CT (AUC, 0.813 [95% CI: 0.780-0.845]) or mpMRI (AUC, 0.865 [95% CI: 0.829-0.901]). Additionally, MPCC model is also effective in predicting single adverse pathological features. The deep learning model that integrates mpMRI and [<sup>18</sup>F]PSMA-1007 PET/CT enhances the predictive capabilities for the presence of AP in PCa patients. This improvement aids physicians in making informed preoperative decisions, ultimately enhancing patient prognosis.

Measuring kidney stone volume - practical considerations and current evidence from the EAU endourology section.

Grossmann NC, Panthier F, Afferi L, Kallidonis P, Somani BK

pubmed logopapersJul 1 2025
This narrative review provides an overview of the use, differences, and clinical impact of current methods for kidney stone volume assessment. The different approaches to volume measurement are based on noncontrast computed tomography (NCCT). While volume measurement using formulas is sufficient for smaller stones, it tends to overestimate volume for larger or irregularly shaped calculi. In contrast, software-based segmentation significantly improves accuracy and reproducibility, and artificial intelligence based volumetry additionally shows excellent agreement with reference standards while reducing observer variability and measurement time. Moreover, specific CT preparation protocols may further enhance image quality and thus improve measurement accuracy. Clinically, stone volume has proven to be a superior predictor of stone-related events during follow-up, spontaneous stone passage under conservative management, and stone-free rates after shockwave lithotripsy (SWL) and ureteroscopy (URS) compared to linear measurements. Although manual measurement remains practical, its accuracy diminishes for complex or larger stones. Software-based segmentation and volumetry offer higher precision and efficiency but require established standards and broader access to dedicated software for routine clinical use.

Leveraging multithreading on edge computing for smart healthcare based on intelligent multimodal classification approach.

Alghareb FS, Hasan BT

pubmed logopapersJul 1 2025
Medical digitization has been intensively developed in the last decade, leading to paving the path for computer-aided medical diagnosis research. Thus, anomaly detection based on machine and deep learning techniques has been extensively employed in healthcare applications, such as medical imaging classification and monitoring of patients' vital signs. To effectively leverage digitized medical records for identifying challenges in healthcare, this manuscript presents a smart Clinical Decision Support System (CDSS) dedicated for medical multimodal data automated diagnosis. A smart healthcare system necessitating medical data management and decision-making is proposed. To deliver timely rapid diagnosis, thread-level parallelism (TLP) is utilized for parallel distribution of classification tasks on three edge computing devices, each employing an AI module for on-device AI classifications. In comparison to existing machine and deep learning classification techniques, the proposed multithreaded architecture realizes a hybrid (ML and DL) processing module on each edge node. In this context, the presented edge computing-based parallel architecture captures a high level of parallelism, tailored for dealing with multiple categories of medical records. The cluster of the proposed architecture encompasses three edge computing Raspberry Pi devices and an edge server. Furthermore, lightweight neural networks, such as MobileNet, EfficientNet, and ResNet18, are trained and optimized based on genetic algorithms to provide classification of brain tumor, pneumonia, and colon cancer. Model deployment was conducted based on Python programming, where PyCharm is run on the edge server whereas Thonny is installed on edge nodes. In terms of accuracy, the proposed GA-based optimized ResNet18 for pneumonia diagnosis achieves 93.59% predictive accuracy and reduces the classifier computation complexity by 33.59%, whereas an outstanding accuracy of 99.78% and 100% were achieved with EfficientNet-v2 for brain tumor and colon cancer prediction, respectively, while both models preserving a reduction of 25% in the model's classifier. More importantly, an inference speedup of 28.61% and 29.08% was obtained by implementing parallel 2 DL and 3 DL threads configurations compared to the sequential implementation, respectively. Thus, the proposed multimodal-multithreaded architecture offers promising prospects for comprehensive and accurate anomaly detection of patients' medical imaging and vital signs. To summarize, our proposed architecture contributes to the advancement of healthcare services, aiming to improve patient medical diagnosis and therapy outcomes.
Page 43 of 92915 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.