Sort by:
Page 428 of 4494481 results

Enhancing Liver Fibrosis Measurement: Deep Learning and Uncertainty Analysis Across Multi-Centre Cohorts

Wojciechowska, M. K., Malacrino, S., Windell, D., Culver, E., Dyson, J., UK-AIH Consortium,, Rittscher, J.

medrxiv logopreprintMay 13 2025
O_FIG O_LINKSMALLFIG WIDTH=200 HEIGHT=111 SRC="FIGDIR/small/25326981v1_ufig1.gif" ALT="Figure 1"> View larger version (31K): [email protected]@14e7b87org.highwire.dtl.DTLVardef@19005c4org.highwire.dtl.DTLVardef@6ac42f_HPS_FORMAT_FIGEXP M_FIG O_FLOATNOGraphical AbstractC_FLOATNO C_FIG HighlightsO_LIA retrospective cohort of liver biopsies collected from over 20 healthcare centres has been assembled. C_LIO_LIThe cohort is characterized on the basis of collagen staining used for liver fibrosis assessment. C_LIO_LIA computational pipeline for the quantification of collagen from liver histology slides has been developed and applied to the described cohorts. C_LIO_LIUncertainty estimation is evaluated as a method to build trust in deep-learning based collagen predictions. C_LI The introduction of digital pathology has revolutionised the way in which histology-based measurements can support large, multi-centre studies. How-ever, pooling data from various centres often reveals significant differences in specimen quality, particularly regarding histological staining protocols. These variations present challenges in reliably quantifying features from stained tissue sections using image analysis. In this study, we investigate the statistical variation of measuring fibrosis across a liver cohort composed of four individual studies from 20 clinical sites across Europe and North America. In a first step, we apply colour consistency measurements to analyse staining variability across this diverse cohort. Subsequently, a learnt segmentation model is used to quantify the collagen proportionate area (CPA) and employed uncertainty mapping to evaluate the quality of the segmentations. Our analysis highlights a lack of standardisation in PicroSirius Red (PSR) staining practices, revealing significant variability in staining protocols across institutions. The deconvolution of the staining of the digitised slides identified the different numbers and types of counterstains used, leading to potentially incomparable results. Our analysis highlights the need for standardised staining protocols to ensure reliable collagen quantification in liver biopsies. The tools and methodologies presented here can be applied to perform slide colour quality control in digital pathology studies, thus enhancing the comparability and reproducibility of fibrosis assessment in the liver and other tissues.

Congenital Heart Disease recognition using Deep Learning/Transformer models

Aidar Amangeldi, Vladislav Yarovenko, Angsar Taigonyrov

arxiv logopreprintMay 13 2025
Congenital Heart Disease (CHD) remains a leading cause of infant morbidity and mortality, yet non-invasive screening methods often yield false negatives. Deep learning models, with their ability to automatically extract features, can assist doctors in detecting CHD more effectively. In this work, we investigate the use of dual-modality (sound and image) deep learning methods for CHD diagnosis. We achieve 73.9% accuracy on the ZCHSound dataset and 80.72% accuracy on the DICOM Chest X-ray dataset.

Automatic deep learning segmentation of mandibular periodontal bone topography on cone-beam computed tomography images.

Palkovics D, Molnar B, Pinter C, García-Mato D, Diaz-Pinto A, Windisch P, Ramseier CA

pubmed logopapersMay 13 2025
This study evaluated the performance of a multi-stage Segmentation Residual Network (SegResNet)-based deep learning (DL) model for the automatic segmentation of cone-beam computed tomography (CBCT) images of patients with stage III and IV periodontitis. Seventy pre-processed CBCT scans from patients undergoing periodontal rehabilitation were used for training and validation. The model was tested on 10 CBCT scans independent from the training dataset by comparing results with semi-automatic (SA) segmentations. Segmentation accuracy was assessed using the Dice similarity coefficient (DSC), Intersection over Union (IoU), and Hausdorff distance 95<sup>th</sup> percentile (HD95). Linear periodontal measurements were performed on four tooth surfaces to assess the validity of the DL segmentation in the periodontal region. The DL model achieved a mean DSC of 0.9650 ± 0.0097, with an IoU of 0.9340 ± 0.0180 and HD95 of 0.4820 mm ± 0.1269 mm, showing strong agreement with SA segmentation. Linear measurements revealed high statistical correlations between the mesial, distal, and lingual surfaces, with intraclass correlation coefficients (ICC) of 0.9442 (p<0.0001), 0.9232 (p<0.0001), and 0.9598(p<0.0001), respectively, while buccal measurements revealed lower consistency, with an ICC of 0.7481 (p<0.0001). The DL method reduced the segmentation time by 47 times compared to the SA method. Acquired 3D models may enable precise treatment planning in cases where conventional diagnostic modalities are insufficient. However, the robustness of the model must be increased to improve its general reliability and consistency at the buccal aspect of the periodontal region. This study presents a DL model for the CBCT-based segmentation of periodontal defects, demonstrating high accuracy and a 47-fold time reduction compared to SA methods, thus improving the feasibility of 3D diagnostics for advanced periodontitis.

Signal-based AI-driven software solution for automated quantification of metastatic bone disease and treatment response assessment using Whole-Body Diffusion-Weighted MRI (WB-DWI) biomarkers in Advanced Prostate Cancer

Antonio Candito, Matthew D Blackledge, Richard Holbrey, Nuria Porta, Ana Ribeiro, Fabio Zugni, Luca D'Erme, Francesca Castagnoli, Alina Dragan, Ricardo Donners, Christina Messiou, Nina Tunariu, Dow-Mu Koh

arxiv logopreprintMay 13 2025
We developed an AI-driven software solution to quantify metastatic bone disease from WB-DWI scans. Core technologies include: (i) a weakly-supervised Residual U-Net model generating a skeleton probability map to isolate bone; (ii) a statistical framework for WB-DWI intensity normalisation, obtaining a signal-normalised b=900s/mm^2 (b900) image; and (iii) a shallow convolutional neural network that processes outputs from (i) and (ii) to generate a mask of suspected bone lesions, characterised by higher b900 signal intensity due to restricted water diffusion. This mask is applied to the gADC map to extract TDV and gADC statistics. We tested the tool using expert-defined metastatic bone disease delineations on 66 datasets, assessed repeatability of imaging biomarkers (N=10), and compared software-based response assessment with a construct reference standard based on clinical, laboratory and imaging assessments (N=118). Dice score between manual and automated delineations was 0.6 for lesions within pelvis and spine, with an average surface distance of 2mm. Relative differences for log-transformed TDV (log-TDV) and median gADC were below 9% and 5%, respectively. Repeatability analysis showed coefficients of variation of 4.57% for log-TDV and 3.54% for median gADC, with intraclass correlation coefficients above 0.9. The software achieved 80.5% accuracy, 84.3% sensitivity, and 85.7% specificity in assessing response to treatment compared to the construct reference standard. Computation time generating a mask averaged 90 seconds per scan. Our software enables reproducible TDV and gADC quantification from WB-DWI scans for monitoring metastatic bone disease response, thus providing potentially useful measurements for clinical decision-making in APC patients.

Trustworthy AI for stage IV non-small cell lung cancer: Automatic segmentation and uncertainty quantification.

Dedeken S, Conze PH, Damerjian Pieters V, Gallinato O, Faure J, Colin T, Visvikis D

pubmed logopapersMay 13 2025
Accurate segmentation of lung tumors is essential for advancing personalized medicine in non-small cell lung cancer (NSCLC). However, stage IV NSCLC presents significant challenges due to heterogeneous tumor morphology and the presence of associated conditions including infection, atelectasis and pleural effusion. The complexity of multicentric datasets further complicates robust segmentation across diverse clinical settings. In this study, we evaluate deep-learning-based approaches for automated segmentation of advanced-stage lung tumors using 3D architectures on 387 CT scans from the Deep-Lung-IV study. Through comprehensive experiments, we assess the impact of model design, HU windowing, and dataset size on delineation performance, providing practical guidelines for robust implementation. Additionally, we propose a confidence score using deep ensembles to quantify prediction uncertainty and automate the identification of complex cases that require further review. Our results demonstrate the potential of attention-based architectures and specific preprocessing strategies to improve segmentation quality in such a challenging clinical scenario, while emphasizing the importance of uncertainty estimation to build trustworthy AI systems in medical imaging. Code is available at: https://github.com/Sacha-Dedeken/SegStageIVNSCLC.

Diagnosis of thyroid cartilage invasion by laryngeal and hypopharyngeal cancers based on CT with deep learning.

Takano Y, Fujima N, Nakagawa J, Dobashi H, Shimizu Y, Kanaya M, Kano S, Homma A, Kudo K

pubmed logopapersMay 13 2025
To develop a convolutional neural network (CNN) model to diagnose thyroid cartilage invasion by laryngeal and hypopharyngeal cancers observed on computed tomography (CT) images and evaluate the model's diagnostic performance. We retrospectively analyzed 91 cases of laryngeal or hypopharyngeal cancer treated surgically at our hospital during the period April 2010 through May 2023, and we divided the cases into datasets for training (n = 61) and testing (n = 30). We reviewed the CT images and pathological diagnoses in all cases to determine the invasion positive- or negative-status as a ground truth. We trained the new CNN model to classify thyroid cartilage invasion-positive or -negative status from the pre-treatment axial CT images by transfer learning from Residual Network 101 (ResNet101), using the training dataset. We then used the test dataset to evaluate the model's performance. Two radiologists, one with extensive head and neck imaging experience (senior reader) and the other with less experience (junior reader) reviewed the CT images of the test dataset to determine whether thyroid cartilage invasion was present. The following were obtained by the CNN model with the test dataset: area under the curve (AUC), 0.82; 90 % accuracy, 80 % sensitivity, and 95 % specificity. The CNN model showed a significant difference in AUCs compared to the junior reader (p = 0.035) but not the senior reader (p = 0.61). The CNN-based diagnostic model can be a useful supportive tool for the assessment of thyroid cartilage invasion in patients with laryngeal or hypopharyngeal cancer.

A deep learning sex-specific body composition ageing biomarker using dual-energy X-ray absorptiometry scan.

Lian J, Cai P, Huang F, Huang J, Vardhanabhuti V

pubmed logopapersMay 13 2025
Chronic diseases are closely linked to alterations in body composition, yet there is a need for reliable biomarkers to assess disease risk and progression. This study aimed to develop and validate a biological age indicator based on body composition derived from dual-energy X-ray absorptiometry (DXA) scans, offering a novel approach to evaluating health status and predicting disease outcomes. A deep learning model was trained on a reference population from the UK Biobank to estimate body composition biological age (BCBA). The model's performance was assessed across various groups, including individuals with typical and atypical body composition, those with pre-existing diseases, and those who developed diseases after DXA imaging. Key metrics such as c-index were employed to examine BCBA's diagnostic and prognostic potential for type 2 diabetes, major adverse cardiovascular events (MACE), atherosclerotic cardiovascular disease (ASCVD), and hypertension. Here we show that BCBA strongly correlates with chronic disease diagnoses and risk prediction. BCBA demonstrated significant associations with type 2 diabetes (odds ratio 1.08 for females and 1.04 for males, p < 0.0005), MACE (odds ratio 1.10 for females and 1.11 for males, p < 0.0005), ASCVD (odds ratio 1.07 for females and 1.10 for males, p < 0.0005), and hypertension (odds ratio 1.06 for females and 1.04 for males, p < 0.0005). It outperformed standard cardiovascular risk profiles in predicting MACE and ASCVD. BCBA is a promising biomarker for assessing chronic disease risk and progression, with potential to improve clinical decision-making. Its integration into routine health assessments could aid early disease detection and personalised interventions.

Application of improved graph convolutional network for cortical surface parcellation.

Tan J, Ren X, Chen Y, Yuan X, Chang F, Yang R, Ma C, Chen X, Tian M, Chen W, Wang Z

pubmed logopapersMay 12 2025
Accurate cortical surface parcellation is essential for elucidating brain organizational principles, functional mechanisms, and the neural substrates underlying higher cognitive and emotional processes. However, the cortical surface is a highly folded complex geometry, and large regional variations make the analysis of surface data challenging. Current methods rely on geometric simplification, such as spherical expansion, which takes hours for spherical mapping and registration, a popular but costly process that does not take full advantage of inherent structural information. In this study, we propose an Attention-guided Deep Graph Convolutional network (ADGCN) for end-to-end parcellation on primitive cortical surface manifolds. ADGCN consists of a deep graph convolutional layer with a symmetrical U-shaped structure, which enables it to effectively transmit detailed information of the original brain map and learn the complex graph structure, help the network enhance feature extraction capability. What's more, we introduce the Squeeze and Excitation (SE) module, which enables the network to better capture key features, suppress unimportant features, and significantly improve parcellation performance with a small amount of computation. We evaluated the model on a public dataset of 100 artificially labeled brain surfaces. Compared with other methods, the proposed network achieves Dice coefficient of 88.53% and an accuracy of 90.27%. The network can segment the cortex directly in the original domain, and has the advantages of high efficiency, simple operation and strong interpretability. This approach facilitates the investigation of cortical changes during development, aging, and disease progression, with the potential to enhance the accuracy of neurological disease diagnosis and the objectivity of treatment efficacy evaluation.

BodyGPS: Anatomical Positioning System

Halid Ziya Yerebakan, Kritika Iyer, Xueqi Guo, Yoshihisa Shinagawa, Gerardo Hermosillo Valadez

arxiv logopreprintMay 12 2025
We introduce a new type of foundational model for parsing human anatomy in medical images that works for different modalities. It supports supervised or unsupervised training and can perform matching, registration, classification, or segmentation with or without user interaction. We achieve this by training a neural network estimator that maps query locations to atlas coordinates via regression. Efficiency is improved by sparsely sampling the input, enabling response times of less than 1 ms without additional accelerator hardware. We demonstrate the utility of the algorithm in both CT and MRI modalities.

Artificial intelligence-assisted diagnosis of early allograft dysfunction based on ultrasound image and data.

Meng Y, Wang M, Niu N, Zhang H, Yang J, Zhang G, Liu J, Tang Y, Wang K

pubmed logopapersMay 12 2025
Early allograft dysfunction (EAD) significantly affects liver transplantation prognosis. This study evaluated the effectiveness of artificial intelligence (AI)-assisted methods in accurately diagnosing EAD and identifying its causes. The primary metric for assessing the accuracy was the area under the receiver operating characteristic curve (AUC). Accuracy, sensitivity, and specificity were calculated and analyzed to compare the performance of the AI models with each other and with radiologists. EAD classification followed the criteria established by Olthoff et al. A total of 582 liver transplant patients who underwent transplantation between December 2012 and June 2021 were selected. Among these, 117 patients (mean age 33.5 ± 26.5 years, 80 men) were evaluated. The ultrasound parameters, images, and clinical information of patients were extracted from the database to train the AI model. The AUC for the ultrasound-spectrogram fusion network constructed from four ultrasound images and medical data was 0.968 (95%CI: 0.940, 0.991), outperforming radiologists by 30% for all metrics. AI assistance significantly improved diagnostic accuracy, sensitivity, and specificity (P < 0.050) for both experienced and less-experienced physicians. EAD lacks efficient diagnosis and causation analysis methods. The integration of AI and ultrasound enhances diagnostic accuracy and causation analysis. By modeling only images and data related to blood flow, the AI model effectively analyzed patients with EAD caused by abnormal blood supply. Our model can assist radiologists in reducing judgment discrepancies, potentially benefitting patients with EAD in underdeveloped regions. Furthermore, it enables targeted treatment for those with abnormal blood supply.
Page 428 of 4494481 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.