Application of improved graph convolutional network for cortical surface parcellation.

May 12, 2025pubmed logopapers

Authors

Tan J,Ren X,Chen Y,Yuan X,Chang F,Yang R,Ma C,Chen X,Tian M,Chen W,Wang Z

Affiliations (3)

  • Department of Medical Engineering, First Affiliated Hospital of Army Medical University, Chongqing, 40039, China.
  • Department of Radiology , First Affiliated Hospital of Army Medical University , Chongqing, 400039, China. [email protected].
  • Department of Medical Engineering, First Affiliated Hospital of Army Medical University, Chongqing, 40039, China. [email protected].

Abstract

Accurate cortical surface parcellation is essential for elucidating brain organizational principles, functional mechanisms, and the neural substrates underlying higher cognitive and emotional processes. However, the cortical surface is a highly folded complex geometry, and large regional variations make the analysis of surface data challenging. Current methods rely on geometric simplification, such as spherical expansion, which takes hours for spherical mapping and registration, a popular but costly process that does not take full advantage of inherent structural information. In this study, we propose an Attention-guided Deep Graph Convolutional network (ADGCN) for end-to-end parcellation on primitive cortical surface manifolds. ADGCN consists of a deep graph convolutional layer with a symmetrical U-shaped structure, which enables it to effectively transmit detailed information of the original brain map and learn the complex graph structure, help the network enhance feature extraction capability. What's more, we introduce the Squeeze and Excitation (SE) module, which enables the network to better capture key features, suppress unimportant features, and significantly improve parcellation performance with a small amount of computation. We evaluated the model on a public dataset of 100 artificially labeled brain surfaces. Compared with other methods, the proposed network achieves Dice coefficient of 88.53% and an accuracy of 90.27%. The network can segment the cortex directly in the original domain, and has the advantages of high efficiency, simple operation and strong interpretability. This approach facilitates the investigation of cortical changes during development, aging, and disease progression, with the potential to enhance the accuracy of neurological disease diagnosis and the objectivity of treatment efficacy evaluation.

Topics

Journal Article
Get Started

Upload your X-ray image and get interpretation.

Upload now →

Disclaimer: X-ray Interpreter's AI-generated results are for informational purposes only and not a substitute for professional medical advice. Always consult a healthcare professional for medical diagnosis and treatment.