Enhancing Liver Fibrosis Measurement: Deep Learning and Uncertainty Analysis Across Multi-Centre Cohorts

Authors

Wojciechowska, M. K.,Malacrino, S.,Windell, D.,Culver, E.,Dyson, J.,UK-AIH Consortium,,Rittscher, J.

Affiliations (1)

  • University of Oxford

Abstract

O_FIG O_LINKSMALLFIG WIDTH=200 HEIGHT=111 SRC="FIGDIR/small/25326981v1_ufig1.gif" ALT="Figure 1"> View larger version (31K): [email protected]@14e7b87org.highwire.dtl.DTLVardef@19005c4org.highwire.dtl.DTLVardef@6ac42f_HPS_FORMAT_FIGEXP M_FIG O_FLOATNOGraphical AbstractC_FLOATNO C_FIG HighlightsO_LIA retrospective cohort of liver biopsies collected from over 20 healthcare centres has been assembled. C_LIO_LIThe cohort is characterized on the basis of collagen staining used for liver fibrosis assessment. C_LIO_LIA computational pipeline for the quantification of collagen from liver histology slides has been developed and applied to the described cohorts. C_LIO_LIUncertainty estimation is evaluated as a method to build trust in deep-learning based collagen predictions. C_LI The introduction of digital pathology has revolutionised the way in which histology-based measurements can support large, multi-centre studies. How-ever, pooling data from various centres often reveals significant differences in specimen quality, particularly regarding histological staining protocols. These variations present challenges in reliably quantifying features from stained tissue sections using image analysis. In this study, we investigate the statistical variation of measuring fibrosis across a liver cohort composed of four individual studies from 20 clinical sites across Europe and North America. In a first step, we apply colour consistency measurements to analyse staining variability across this diverse cohort. Subsequently, a learnt segmentation model is used to quantify the collagen proportionate area (CPA) and employed uncertainty mapping to evaluate the quality of the segmentations. Our analysis highlights a lack of standardisation in PicroSirius Red (PSR) staining practices, revealing significant variability in staining protocols across institutions. The deconvolution of the staining of the digitised slides identified the different numbers and types of counterstains used, leading to potentially incomparable results. Our analysis highlights the need for standardised staining protocols to ensure reliable collagen quantification in liver biopsies. The tools and methodologies presented here can be applied to perform slide colour quality control in digital pathology studies, thus enhancing the comparability and reproducibility of fibrosis assessment in the liver and other tissues.

Topics

pathology
Get Started

Upload your X-ray image and get interpretation.

Upload now →

Disclaimer: X-ray Interpreter's AI-generated results are for informational purposes only and not a substitute for professional medical advice. Always consult a healthcare professional for medical diagnosis and treatment.