Sort by:
Page 420 of 4494481 results

Performance of Artificial Intelligence in Diagnosing Lumbar Spinal Stenosis: A Systematic Review and Meta-Analysis.

Yang X, Zhang Y, Li Y, Wu Z

pubmed logopapersMay 15 2025
The present study followed the reporting guidelines for systematic reviews and meta-analyses. We conducted this study to review the diagnostic value of artificial intelligence (AI) for various types of lumbar spinal stenosis (LSS) and the level of stenosis, offering evidence-based support for the development of smart diagnostic tools. AI is currently being utilized for image processing in clinical practice. Some studies have explored AI techniques for identifying the severity of LSS in recent years. Nevertheless, there remains a shortage of structured data proving its effectiveness. Four databases (PubMed, Cochrane, Embase, and Web of Science) were searched until March 2024, including original studies that utilized deep learning (DL) and machine learning (ML) models to diagnose LSS. The risk of bias of included studies was assessed using Quality Assessment of Diagnostic Accuracy Studies is a quality evaluation tool for diagnostic research (diagnostic tests). Computed Tomography. PROSPERO is an international database of prospectively registered systematic reviews. Summary Receiver Operating Characteristic. Magnetic Resonance. Central canal stenosis. three-dimensional magnetic resonance myelography. The accuracy in the validation set was extracted for a meta-analysis. The meta-analysis was completed in R4.4.0. A total of 48 articles were included, with an overall accuracy of 0.885 (95% CI: 0.860-0907) for dichotomous tasks. Among them, the accuracy was 0.892 (95% CI: 0.867-0915) for DL and 0.833 (95% CI: 0.760-0895) for ML. The overall accuracy for LSS was 0.895 (95% CI: 0.858-0927), with an accuracy of 0.912 (95% CI: 0.873-0.944) for DL and 0.843 (95% CI: 0.766-0.907) for ML. The overall accuracy for central canal stenosis was 0.875 (95% CI: 0.821-0920), with an accuracy of 0.881 (95% CI: 0.829-0.925) for DL and 0.733 (95% CI: 0.541-0.877) for ML. The overall accuracy for neural foramen stenosis was 0.893 (95% CI: 0.851-0.928). In polytomous tasks, the accuracy was 0.936 (95% CI: 0.895-0.967) for no LSS, 0.503 (95% CI: 0.391-0.614) for mild LSS, 0.512 (95% CI: 0.336-0.688) for moderate LSS, and 0.860 for severe LSS (95% CI: 0.733-0.954). AI is highly valuable for diagnosing LSS. However, further external validation is necessary to enhance the analysis of different stenosis categories and improve the diagnostic accuracy for mild to moderate stenosis levels.

Automated Microbubble Discrimination in Ultrasound Localization Microscopy by Vision Transformer.

Wang R, Lee WN

pubmed logopapersMay 15 2025
Ultrasound localization microscopy (ULM) has revolutionized microvascular imaging by breaking the acoustic diffraction limit. However, different ULM workflows depend heavily on distinct prior knowledge, such as the impulse response and empirical selection of parameters (e.g., the number of microbubbles (MBs) per frame M), or the consistency of training-test dataset in deep learning (DL)-based studies. We hereby propose a general ULM pipeline that reduces priors. Our approach leverages a DL model that simultaneously distills microbubble signals and reduces speckle from every frame without estimating the impulse response and M. Our method features an efficient channel attention vision transformer (ViT) and a progressive learning strategy, enabling it to learn global information through training on progressively increasing patch sizes. Ample synthetic data were generated using the k-Wave toolbox to simulate various MB patterns, thus overcoming the deficiency of labeled data. The ViT output was further processed by a standard radial symmetry method for sub-pixel localization. Our method performed well on model-unseen public datasets: one in silico dataset with ground truth and four in vivo datasets of mouse tumor, rat brain, rat brain bolus, and rat kidney. Our pipeline outperformed conventional ULM, achieving higher positive predictive values (precision in DL, 0.88-0.41 vs. 0.83-0.16) and improved accuracy (root-mean-square errors: 0.25-0.14 λ vs. 0.31-0.13 λ) across a range of signal-to-noise ratios from 60 dB to 10 dB. Our model could detect more vessels in diverse in vivo datasets while achieving comparable resolutions to the standard method. The proposed ViT-based model, seamlessly integrated with state-of-the-art downstream ULM steps, improved the overall ULM performance with no priors.

Deep learning MRI-based radiomic models for predicting recurrence in locally advanced nasopharyngeal carcinoma after neoadjuvant chemoradiotherapy: a multi-center study.

Hu C, Xu C, Chen J, Huang Y, Meng Q, Lin Z, Huang X, Chen L

pubmed logopapersMay 15 2025
Local recurrence and distant metastasis were a common manifestation of locoregionally advanced nasopharyngeal carcinoma (LA-NPC) after neoadjuvant chemoradiotherapy (NACT). To validate the clinical value of MRI radiomic models based on deep learning for predicting the recurrence of LA-NPC patients. A total of 328 NPC patients from four hospitals were retrospectively included and divided into the training(n = 229) and validation (n = 99) cohorts randomly. Extracting 975 traditional radiomic features and 1000 deep radiomic features from contrast enhanced T1-weighted (T1WI + C) and T2-weighted (T2WI) sequences, respectively. Least absolute shrinkage and selection operator (LASSO) was applied for feature selection. Five machine learning classifiers were conducted to develop three models for LA-NPC prediction in training cohort, namely Model I: traditional radiomic features, Model II: combined the deep radiomic features with Model I, and Model III: combined Model II with clinical features. The predictive performance of these models were evaluated by receive operating characteristic (ROC) curve analysis, area under the curve (AUC), accuracy, sensitivity and specificity in both cohorts. The clinical characteristics in two cohorts showed no significant differences. Choosing 15 radiomic features and 6 deep radiomic features from T1WI + C. Choosing 9 radiomic features and 6 deep radiomic features from T2WI. In T2WI, the Model II based on Random forest (RF) (AUC = 0.87) performed best compared with other models in validation cohort. Traditional radiomic model combined with deep radiomic features shows excellent predictive performance. It could be used assist clinical doctors to predict curative effect for LA-NPC patients after NACT.

Ordered-subsets Multi-diffusion Model for Sparse-view CT Reconstruction

Pengfei Yu, Bin Huang, Minghui Zhang, Weiwen Wu, Shaoyu Wang, Qiegen Liu

arxiv logopreprintMay 15 2025
Score-based diffusion models have shown significant promise in the field of sparse-view CT reconstruction. However, the projection dataset is large and riddled with redundancy. Consequently, applying the diffusion model to unprocessed data results in lower learning effectiveness and higher learning difficulty, frequently leading to reconstructed images that lack fine details. To address these issues, we propose the ordered-subsets multi-diffusion model (OSMM) for sparse-view CT reconstruction. The OSMM innovatively divides the CT projection data into equal subsets and employs multi-subsets diffusion model (MSDM) to learn from each subset independently. This targeted learning approach reduces complexity and enhances the reconstruction of fine details. Furthermore, the integration of one-whole diffusion model (OWDM) with complete sinogram data acts as a global information constraint, which can reduce the possibility of generating erroneous or inconsistent sinogram information. Moreover, the OSMM's unsupervised learning framework provides strong robustness and generalizability, adapting seamlessly to varying sparsity levels of CT sinograms. This ensures consistent and reliable performance across different clinical scenarios. Experimental results demonstrate that OSMM outperforms traditional diffusion models in terms of image quality and noise resilience, offering a powerful and versatile solution for advanced CT imaging in sparse-view scenarios.

Automatic head and neck tumor segmentation through deep learning and Bayesian optimization on three-dimensional medical images.

Douglas Z, Rahman A, Duggar WN, Wang H

pubmed logopapersMay 15 2025
Medical imaging constitutes critical information in the diagnostic and prognostic evaluation of patients, as it serves to uncover a broad spectrum of pathologies and deviances. Clinical practitioners who carry out medical image screening are primarily reliant on their knowledge and experience for disease diagnosis. Convolutional Neural Networks (CNNs) hold the potential to serve as a formidable decision-support tool in the realm of medical image analysis due to their high capacity to extract hierarchical features and effectuate direct classification and segmentation from image data. However, CNNs contain a myriad of hyperparameters and optimizing these hyperparameters poses a major obstacle to the effective implementation of CNNs. In this work, a two-phase Bayesian Optimization-derived Scheduling (BOS) approach is proposed for hyperparameter optimization for the head and cancerous tissue segmentation tasks. We proposed this two-phase BOS approach to incorporate both rapid convergences in the first training phase and slower (but without overfitting) improvements in the last training phase. Furthermore, we found that batch size and learning rate have a significant impact on the training process, but optimizing them separately can lead to sub-optimal hyperparameter combinations. Therefore, batch size and learning rate have been coupled as the batch size to learning rate (B2L) ratio and utilized in the optimization process to optimize both simultaneously. The optimized hyperparameters have been tested for a three-dimensional V-Net model with computed tomography (CT) and positron emission tomography (PET) scans to segment and classify cancerous and noncancerous tissues. The results of 10-fold cross-validation indicate that the optimal batch size to learning rate (B2L) ratio for each phase of the training method can improve the overall medical image segmentation performance.

External Validation of a CT-Based Radiogenomics Model for the Detection of EGFR Mutation in NSCLC and the Impact of Prevalence in Model Building by Using Synthetic Minority Over Sampling (SMOTE): Lessons Learned.

Kohan AA, Mirshahvalad SA, Hinzpeter R, Kulanthaivelu R, Avery L, Ortega C, Metser U, Hope A, Veit-Haibach P

pubmed logopapersMay 15 2025
Radiogenomics holds promise in identifying molecular alterations in nonsmall cell lung cancer (NSCLC) using imaging features. Previously, we developed a radiogenomics model to predict epidermal growth factor receptor (EGFR) mutations based on contrast-enhanced computed tomography (CECT) in NSCLC patients. The current study aimed to externally validate this model using a publicly available National Institutes of Health (NIH)-based NSCLC dataset and assess the effect of EGFR mutation prevalence on model performance through synthetic minority oversampling technique (SMOTE). The original radiogenomics model was validated on an independent NIH cohort (n=140). For assessing the influence of disease prevalence, six SMOTE-augmented datasets were created, simulating EGFR mutation prevalence from 25% to 50%. Seven models were developed (one from original data, six SMOTE-augmented), each undergoing rigorous cross-validation, feature selection, and logistic regression modeling. Models were tested against the NIH cohort. Performance was compared using area under the receiver operating characteristic curve (Area Under the Curve [AUC]), and differences between radiomic-only, clinical-only, and combined models were statistically assessed. External validation revealed poor diagnostic performance for both our model and a previously published EGFR radiomics model (AUC ∼0.5). The clinical model alone achieved higher diagnostic accuracy (AUC 0.74). SMOTE-augmented models showed increased sensitivity but did not improve overall AUC compared to the clinical-only model. Changing EGFR mutation prevalence had minimal impact on AUC, challenging previous assumptions about the influence of sample imbalance on model performance. External validation failed to reproduce prior radiogenomics model performance, while clinical variables alone retained strong predictive value. SMOTE-based oversampling did not improve diagnostic accuracy, suggesting that, in EGFR prediction, radiomics may offer limited value beyond clinical data. Emphasis on robust external validation and data-sharing is essential for future clinical implementation of radiogenomic models.

Leveraging Vision Transformers in Multimodal Models for Retinal OCT Analysis.

Feretzakis G, Karakosta C, Gkoulalas-Divanis A, Bisoukis A, Boufeas IZ, Bazakidou E, Sakagianni A, Kalles D, Verykios VS

pubmed logopapersMay 15 2025
Optical Coherence Tomography (OCT) has become an indispensable imaging modality in ophthalmology, providing high-resolution cross-sectional images of the retina. Accurate classification of OCT images is crucial for diagnosing retinal diseases such as Age-related Macular Degeneration (AMD) and Diabetic Macular Edema (DME). This study explores the efficacy of various deep learning models, including convolutional neural networks (CNNs) and Vision Transformers (ViTs), in classifying OCT images. We also investigate the impact of integrating metadata (patient age, sex, eye laterality, and year) into the classification process, even when a significant portion of metadata is missing. Our results demonstrate that multimodal models leveraging both image and metadata inputs, such as the Multimodal ResNet18, can achieve competitive performance compared to image-only models, such as DenseNet121. Notably, DenseNet121 and Multimodal ResNet18 achieved the highest accuracy of 95.16%, with DenseNet121 showing a slightly higher F1-score of 0.9313. The multimodal ViT-based model also demonstrated promising results, achieving an accuracy of 93.22%, indicating the potential of Vision Transformers (ViTs) in medical image analysis, especially for handling complex multimodal data.

A Deep-Learning Framework for Ovarian Cancer Subtype Classification Using Whole Slide Images.

Wang C, Yi Q, Aflakian A, Ye J, Arvanitis T, Dearn KD, Hajiyavand A

pubmed logopapersMay 15 2025
Ovarian cancer, a leading cause of cancer-related deaths among women, comprises distinct subtypes each requiring different treatment approaches. This paper presents a deep-learning framework for classifying ovarian cancer subtypes using Whole Slide Imaging (WSI). Our method contains three stages: image tiling, feature extraction, and multi-instance learning. Our approach is trained and validated on a public dataset from 80 distinct patients, achieving up to 89,8% accuracy with a notable improvement in computational efficiency. The results demonstrate the potential of our framework to augment diagnostic precision in clinical settings, offering a scalable solution for the accurate classification of ovarian cancer subtypes.

Does Whole Brain Radiomics on Multimodal Neuroimaging Make Sense in Neuro-Oncology? A Proof of Concept Study.

Danilov G, Kalaeva D, Vikhrova N, Shugay S, Telysheva E, Goraynov S, Kosyrkova A, Pavlova G, Pronin I, Usachev D

pubmed logopapersMay 15 2025
Employing a whole-brain (WB) mask as a region of interest for extracting radiomic features is a feasible, albeit less common, approach in neuro-oncology research. This study aims to evaluate the relationship between WB radiomic features, derived from various neuroimaging modalities in patients with gliomas, and some key baseline characteristics of patients and tumors such as sex, histological tumor type, WHO Grade (2021), IDH1 mutation status, necrosis lesions, contrast enhancement, T/N peak value and metabolic tumor volume. Forty-one patients (average age 50 ± 15 years, 21 females and 20 males) with supratentorial glial tumors were enrolled in this study. A total of 38,720 radiomic features were extracted. Cluster analysis revealed that whole-brain images of biologically different tumors could be distinguished to a certain extent based on their imaging biomarkers. Machine learning capabilities to detect image properties like contrast-enhanced or necrotic zones validated radiomic features in objectifying image semantics. Furthermore, the predictive capability of imaging biomarkers in determining tumor histology, grade and mutation type underscores their diagnostic potential. Whole-brain radiomics using multimodal neuroimaging data appeared to be informative in neuro-oncology, making research in this area well justified.

Energy-Efficient AI for Medical Diagnostics: Performance and Sustainability Analysis of ResNet and MobileNet.

Rehman ZU, Hassan U, Islam SU, Gallos P, Boudjadar J

pubmed logopapersMay 15 2025
Artificial intelligence (AI) has transformed medical diagnostics by enhancing the accuracy of disease detection, particularly through deep learning models to analyze medical imaging data. However, the energy demands of training these models, such as ResNet and MobileNet, are substantial and often overlooked; however, researchers mainly focus on improving model accuracy. This study compares the energy use of these two models for classifying thoracic diseases using the well-known CheXpert dataset. We calculate power and energy consumption during training using the EnergyEfficientAI library. Results demonstrate that MobileNet outperforms ResNet by consuming less power and completing training faster, resulting in lower overall energy costs. This study highlights the importance of prioritizing energy efficiency in AI model development, promoting sustainable, eco-friendly approaches to advance medical diagnosis.
Page 420 of 4494481 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.