Sort by:
Page 41 of 92915 results

SPACE: Subregion Perfusion Analysis for Comprehensive Evaluation of Breast Tumor Using Contrast-Enhanced Ultrasound-A Retrospective and Prospective Multicenter Cohort Study.

Fu Y, Chen J, Chen Y, Lin Z, Ye L, Ye D, Gao F, Zhang C, Huang P

pubmed logopapersJul 2 2025
To develop a dynamic contrast-enhanced ultrasound (CEUS)-based method for segmenting tumor perfusion subregions, quantifying tumor heterogeneity, and constructing models for distinguishing benign from malignant breast tumors. This retrospective-prospective cohort study analyzed CEUS videos of patients with breast tumors from four academic medical centers between September 2015 and October 2024. Pixel-based time-intensity curve (TIC) perfusion variables were extracted, followed by the generation of perfusion heterogeneity maps through cluster analysis. A combined diagnostic model incorporating clinical variables, subregion percentages, and radiomics scores was developed, and subsequently, a nomogram based on this model was constructed for clinical application. A total of 339 participants were included in this bidirectional study. Retrospective data included 233 tumors divided into training and test sets. The prospective data comprised 106 tumors as an independent test set. Subregion analysis revealed Subregion 2 dominated benign tumors, while Subregion 3 was prevalent in malignant tumors. Among 59 machine-learning models, Elastic Net (ENET) (α = 0.7) performed best. Age and subregion radiomics scores were independent risk factors. The combined model achieved area under the curve (AUC) values of 0.93, 0.82, and 0.90 in the training, retrospective, and prospective test sets, respectively. The proposed CEUS-based method enhances visualization and quantification of tumor perfusion dynamics, significantly improving the diagnostic accuracy for breast tumors.

A computationally frugal open-source foundation model for thoracic disease detection in lung cancer screening programs

Niccolò McConnell, Pardeep Vasudev, Daisuke Yamada, Daryl Cheng, Mehran Azimbagirad, John McCabe, Shahab Aslani, Ahmed H. Shahin, Yukun Zhou, The SUMMIT Consortium, Andre Altmann, Yipeng Hu, Paul Taylor, Sam M. Janes, Daniel C. Alexander, Joseph Jacob

arxiv logopreprintJul 2 2025
Low-dose computed tomography (LDCT) imaging employed in lung cancer screening (LCS) programs is increasing in uptake worldwide. LCS programs herald a generational opportunity to simultaneously detect cancer and non-cancer-related early-stage lung disease. Yet these efforts are hampered by a shortage of radiologists to interpret scans at scale. Here, we present TANGERINE, a computationally frugal, open-source vision foundation model for volumetric LDCT analysis. Designed for broad accessibility and rapid adaptation, TANGERINE can be fine-tuned off the shelf for a wide range of disease-specific tasks with limited computational resources and training data. Relative to models trained from scratch, TANGERINE demonstrates fast convergence during fine-tuning, thereby requiring significantly fewer GPU hours, and displays strong label efficiency, achieving comparable or superior performance with a fraction of fine-tuning data. Pretrained using self-supervised learning on over 98,000 thoracic LDCTs, including the UK's largest LCS initiative to date and 27 public datasets, TANGERINE achieves state-of-the-art performance across 14 disease classification tasks, including lung cancer and multiple respiratory diseases, while generalising robustly across diverse clinical centres. By extending a masked autoencoder framework to 3D imaging, TANGERINE offers a scalable solution for LDCT analysis, departing from recent closed, resource-intensive models by combining architectural simplicity, public availability, and modest computational requirements. Its accessible, open-source lightweight design lays the foundation for rapid integration into next-generation medical imaging tools that could transform LCS initiatives, allowing them to pivot from a singular focus on lung cancer detection to comprehensive respiratory disease management in high-risk populations.

Robust brain age estimation from structural MRI with contrastive learning

Carlo Alberto Barbano, Benoit Dufumier, Edouard Duchesnay, Marco Grangetto, Pietro Gori

arxiv logopreprintJul 2 2025
Estimating brain age from structural MRI has emerged as a powerful tool for characterizing normative and pathological aging. In this work, we explore contrastive learning as a scalable and robust alternative to supervised approaches for brain age estimation. We introduce a novel contrastive loss function, $\mathcal{L}^{exp}$, and evaluate it across multiple public neuroimaging datasets comprising over 20,000 scans. Our experiments reveal four key findings. First, scaling pre-training on diverse, multi-site data consistently improves generalization performance, cutting external mean absolute error (MAE) nearly in half. Second, $\mathcal{L}^{exp}$ is robust to site-related confounds, maintaining low scanner-predictability as training size increases. Third, contrastive models reliably capture accelerated aging in patients with cognitive impairment and Alzheimer's disease, as shown through brain age gap analysis, ROC curves, and longitudinal trends. Lastly, unlike supervised baselines, $\mathcal{L}^{exp}$ maintains a strong correlation between brain age accuracy and downstream diagnostic performance, supporting its potential as a foundation model for neuroimaging. These results position contrastive learning as a promising direction for building generalizable and clinically meaningful brain representations.

AI-driven genetic algorithm-optimized lung segmentation for precision in early lung cancer diagnosis.

Said Y, Ayachi R, Afif M, Saidani T, Alanezi ST, Saidani O, Algarni AD

pubmed logopapersJul 2 2025
Lung cancer remains the leading cause of cancer-related mortality worldwide, necessitating accurate and efficient diagnostic tools to improve patient outcomes. Lung segmentation plays a pivotal role in the diagnostic pipeline, directly impacting the accuracy of disease detection and treatment planning. This study presents an advanced AI-driven framework, optimized through genetic algorithms, for precise lung segmentation in early cancer diagnosis. The proposed model builds upon the UNET3 + architecture and integrates multi-scale feature extraction with enhanced optimization strategies to improve segmentation accuracy while significantly reducing computational complexity. By leveraging genetic algorithms, the framework identifies optimal neural network configurations within a defined search space, ensuring high segmentation performance with minimal parameters. Extensive experiments conducted on publicly available lung segmentation datasets demonstrated superior results, achieving a dice similarity coefficient of 99.17% with only 26% of the parameters required by the baseline UNET3 + model. This substantial reduction in model size and computational cost makes the system highly suitable for resource-constrained environments, including point-of-care diagnostic devices. The proposed approach exemplifies the transformative potential of AI in medical imaging, enabling earlier and more precise lung cancer diagnosis while reducing healthcare disparities in resource-limited settings.

Hybrid deep learning architecture for scalable and high-quality image compression.

Al-Khafaji M, Ramaha NTA

pubmed logopapersJul 2 2025
The rapid growth of medical imaging data presents challenges for efficient storage and transmission, particularly in clinical and telemedicine applications where image fidelity is crucial. This study proposes a hybrid deep learning-based image compression framework that integrates Stationary Wavelet Transform (SWT), Stacked Denoising Autoencoder (SDAE), Gray-Level Co-occurrence Matrix (GLCM), and K-means clustering. The framework enables multiresolution decomposition, texture-aware feature extraction, and adaptive region-based compression. A custom loss function that combines Mean Squared Error (MSE) and Structural Similarity Index (SSIM) ensures high perceptual quality and compression efficiency. The proposed model was evaluated across multiple benchmark medical imaging datasets and achieved a Peak Signal-to-Noise Ratio (PSNR) of up to 50.36 dB, MS-SSIM of 0.9999, and an encoding-decoding time of 0.065 s. These results demonstrate the model's capability to outperform existing approaches while maintaining diagnostic integrity, scalability, and speed, making it suitable for real-time and resource-constrained clinical environments.

A novel neuroimaging based early detection framework for alzheimer disease using deep learning.

Alasiry A, Shinan K, Alsadhan AA, Alhazmi HE, Alanazi F, Ashraf MU, Muhammad T

pubmed logopapersJul 2 2025
Alzheimer's disease (AD) is a progressive neurodegenerative disorder that significantly impacts cognitive function, posing a major global health challenge. Despite its rising prevalence, particularly in low and middle-income countries, early diagnosis remains inadequate, with projections estimating over 55 million affected individuals by 2022, expected to triple by 2050. Accurate early detection is critical for effective intervention. This study presents Neuroimaging-based Early Detection of Alzheimer's Disease using Deep Learning (NEDA-DL), a novel computer-aided diagnostic (CAD) framework leveraging a hybrid ResNet-50 and AlexNet architecture optimized with CUDA-based parallel processing. The proposed deep learning model processes MRI and PET neuroimaging data, utilizing depthwise separable convolutions to enhance computational efficiency. Performance evaluation using key metrics including accuracy, sensitivity, specificity, and F1-score demonstrates state-of-the-art classification performance, with the Softmax classifier achieving 99.87% accuracy. Comparative analyses further validate the superiority of NEDA-DL over existing methods. By integrating structural and functional neuroimaging insights, this approach enhances diagnostic precision and supports clinical decision-making in Alzheimer's disease detection.

PanTS: The Pancreatic Tumor Segmentation Dataset

Wenxuan Li, Xinze Zhou, Qi Chen, Tianyu Lin, Pedro R. A. S. Bassi, Szymon Plotka, Jaroslaw B. Cwikla, Xiaoxi Chen, Chen Ye, Zheren Zhu, Kai Ding, Heng Li, Kang Wang, Yang Yang, Yucheng Tang, Daguang Xu, Alan L. Yuille, Zongwei Zhou

arxiv logopreprintJul 2 2025
PanTS is a large-scale, multi-institutional dataset curated to advance research in pancreatic CT analysis. It contains 36,390 CT scans from 145 medical centers, with expert-validated, voxel-wise annotations of over 993,000 anatomical structures, covering pancreatic tumors, pancreas head, body, and tail, and 24 surrounding anatomical structures such as vascular/skeletal structures and abdominal/thoracic organs. Each scan includes metadata such as patient age, sex, diagnosis, contrast phase, in-plane spacing, slice thickness, etc. AI models trained on PanTS achieve significantly better performance in pancreatic tumor detection, localization, and segmentation compared to those trained on existing public datasets. Our analysis indicates that these gains are directly attributable to the 16x larger-scale tumor annotations and indirectly supported by the 24 additional surrounding anatomical structures. As the largest and most comprehensive resource of its kind, PanTS offers a new benchmark for developing and evaluating AI models in pancreatic CT analysis.

3D MedDiffusion: A 3D Medical Latent Diffusion Model for Controllable and High-quality Medical Image Generation.

Wang H, Liu Z, Sun K, Wang X, Shen D, Cui Z

pubmed logopapersJul 2 2025
The generation of medical images presents significant challenges due to their high-resolution and three-dimensional nature. Existing methods often yield suboptimal performance in generating high-quality 3D medical images, and there is currently no universal generative framework for medical imaging. In this paper, we introduce a 3D Medical Latent Diffusion (3D MedDiffusion) model for controllable, high-quality 3D medical image generation. 3D MedDiffusion incorporates a novel, highly efficient Patch-Volume Autoencoder that compresses medical images into latent space through patch-wise encoding and recovers back into image space through volume-wise decoding. Additionally, we design a new noise estimator to capture both local details and global structural information during diffusion denoising process. 3D MedDiffusion can generate fine-detailed, high-resolution images (up to 512x512x512) and effectively adapt to various downstream tasks as it is trained on large-scale datasets covering CT and MRI modalities and different anatomical regions (from head to leg). Experimental results demonstrate that 3D MedDiffusion surpasses state-of-the-art methods in generative quality and exhibits strong generalizability across tasks such as sparse-view CT reconstruction, fast MRI reconstruction, and data augmentation for segmentationand classification. Source code and checkpoints are available at https://github.com/ShanghaiTech-IMPACT/3D-MedDiffusion.

Urethra contours on MRI: multidisciplinary consensus educational atlas and reference standard for artificial intelligence benchmarking

song, y., Nguyen, L., Dornisch, A., Baxter, M. T., Barrett, T., Dale, A., Dess, R. T., Harisinghani, M., Kamran, S. C., Liss, M. A., Margolis, D. J., Weinberg, E. P., Woolen, S. A., Seibert, T. M.

medrxiv logopreprintJul 2 2025
IntroductionThe urethra is a recommended avoidance structure for prostate cancer treatment. However, even subspecialist physicians often struggle to accurately identify the urethra on available imaging. Automated segmentation tools show promise, but a lack of reliable ground truth or appropriate evaluation standards has hindered validation and clinical adoption. This study aims to establish a reference-standard dataset with expert consensus contours, define clinically meaningful evaluation metrics, and assess the performance and generalizability of a deep-learning-based segmentation model. Materials and MethodsA multidisciplinary panel of four experienced subspecialists in prostate MRI generated consensus contours of the male urethra for 71 patients across six imaging centers. Four of those cases were previously used in an international study (PURE-MRI), wherein 62 physicians attempted to contour the prostate and urethra on the patient images. Separately, we developed a deep-learning AI model for urethra segmentation using another 151 cases from one center and evaluated it against the consensus reference standard and compared to human performance using Dice Score, percent urethra Coverage, and Maximum 2D (axial, in-plane) Hausdorff Distance (HD) from the reference standard. ResultsIn the PURE-MRI dataset, the AI model outperformed most physicians, achieving a median Dice of 0.41 (vs. 0.33 for physicians), Coverage of 81% (vs. 36%), and Max 2D HD of 1.8 mm (vs. 1.6 mm). In the larger dataset, performance remained consistent, with a Dice of 0.40, Coverage of 89%, and Max 2D HD of 2.0 mm, indicating strong generalizability across a broader patient population and more varied imaging conditions. ConclusionWe established a multidisciplinary consensus benchmark for segmentation of the urethra. The deep-learning model performs comparably to specialist physicians and demonstrates consistent results across multiple institutions. It shows promise as a clinical decision-support tool for accurate and reliable urethra segmentation in prostate cancer radiotherapy planning and studies of dose-toxicity associations.

Multi-scale fusion semantic enhancement network for medical image segmentation.

Zhang Z, Xu C, Li Z, Chen Y, Nie C

pubmed logopapersJul 2 2025
The application of sophisticated computer vision techniques for medical image segmentation (MIS) plays a vital role in clinical diagnosis and treatment. Although Transformer-based models are effective at capturing global context, they are often ineffective at dealing with local feature dependencies. In order to improve this problem, we design a Multi-scale Fusion and Semantic Enhancement Network (MFSE-Net) for endoscopic image segmentation, which aims to capture global information and enhance detailed information. MFSE-Net uses a dual encoder architecture, with PVTv2 as the primary encoder to capture global features and CNNs as the secondary encoder to capture local details. The main encoder includes the LGDA (Large-kernel Grouped Deformable Attention) module for filtering noise and enhancing the semantic extraction of the four hierarchical features. The auxiliary encoder leverages the MLCF (Multi-Layered Cross-attention Fusion) module to integrate high-level semantic data from the deep CNN with fine spatial details from the shallow layers, enhancing the precision of boundaries and positioning. On the decoder side, we have introduced the PSE (Parallel Semantic Enhancement) module, which embeds the boundary and position information of the secondary encoder into the output characteristics of the backbone network. In the multi-scale decoding process, we also add SAM (Scale Aware Module) to recover global semantic information and offset for the loss of boundary details. Extensive experiments have shown that MFSE-Net overwhelmingly outperforms SOTA on the renal tumor and polyp datasets.
Page 41 of 92915 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.