Sort by:
Page 405 of 4524519 results

Deep Learning-Based Multimodal Feature Interaction-Guided Fusion: Enhancing the Evaluation of EGFR in Advanced Lung Adenocarcinoma.

Xu J, Feng B, Chen X, Wu F, Liu Y, Yu Z, Lu S, Duan X, Chen X, Li K, Zhang W, Dai X

pubmed logopapersMay 22 2025
The aim of this study is to develop a deep learning-based multimodal feature interaction-guided fusion (DL-MFIF) framework that integrates macroscopic information from computed tomography (CT) images with microscopic information from whole-slide images (WSIs) to predict the epidermal growth factor receptor (EGFR) mutations of primary lung adenocarcinoma in patients with advanced-stage disease. Data from 396 patients with lung adenocarcinoma across two medical institutions were analyzed. The data from 243 cases were divided into a training set (n=145) and an internal validation set (n=98) in a 6:4 ratio, and data from an additional 153 cases from another medical institution were included as an external validation set. All cases included CT scan images and WSIs. To integrate multimodal information, we developed the DL-MFIF framework, which leverages deep learning techniques to capture the interactions between radiomic macrofeatures derived from CT images and microfeatures obtained from WSIs. Compared to other classification models, the DL-MFIF model achieved significantly higher area under the curve (AUC) values. Specifically, the model outperformed others on both the internal validation set (AUC=0.856, accuracy=0.750) and the external validation set (AUC=0.817, accuracy=0.708). Decision curve analysis (DCA) demonstrated that the model provided superior net benefits(range 0.15-0.87). Delong's test for external validation confirmed the statistical significance of the results (P<0.05). The DL-MFIF model demonstrated excellent performance in evaluating and distinguishing the EGFR in patients with advanced lung adenocarcinoma. This model effectively aids radiologists in accurately classifying EGFR mutations in patients with primary lung adenocarcinoma, thereby improving treatment outcomes for this population.

Enhancing Boundary Accuracy in Semantic Segmentation of Chest X-Ray Images Using Gaussian Process Regression.

Aljaddouh B, D Malathi D

pubmed logopapersMay 22 2025
This research aims to enhance X-ray lung segmentation by addressing boundary distortions in anatomical structures, with the objective of refining segmentation boundaries and improving the morphological shape of segmented objects. The proposed approach combines the K-segment principal curve with Gaussian Process Regression (GPR) to refine segmentation boundaries, evaluated using lung X-ray datasets at varying resolutions. Several state-of-the-art models, including U-Net, SegNet, and TransUnet, were also assessed for comparison. The model employed a custom kernel for GPR, combining Radial Basis Function (RBF) with a cosine similarity term. The effectiveness of the model was evaluated using metrics such as the Dice Coefficient (DC) and Jaccard Index (JC) for segmentation accuracy, along with Average Symmetric Surface Distance (ASSD) and Hausdorff Distance (HD) for boundary alignment. The proposed method achieved superior segmentation performance, particularly at the highest resolution (1024x1024 pixels), with a DC of 95.7% for the left lung and 94.1% for the right lung. Among the different models, TransUnet outperformed others across both the semantic segmentation and boundary refinement stages, showing significant improvements in DC, JC, ASSD, and HD. The results indicate that the proposed boundary refinement approach effectively improves the segmentation quality of lung X-rays, excelling in refining well-defined structures and achieving superior boundary alignment, showcasing its potential for clinical applications. However, limitations exist when dealing with irregular or unpredictable shapes, suggesting areas for future enhancement.

A Deep Learning Vision-Language Model for Diagnosing Pediatric Dental Diseases

Pham, T.

medrxiv logopreprintMay 22 2025
This study proposes a deep learning vision-language model for the automated diagnosis of pediatric dental diseases, with a focus on differentiating between caries and periapical infections. The model integrates visual features extracted from panoramic radiographs using methods of non-linear dynamics and textural encoding with textual descriptions generated by a large language model. These multimodal features are concatenated and used to train a 1D-CNN classifier. Experimental results demonstrate that the proposed model outperforms conventional convolutional neural networks and standalone language-based approaches, achieving high accuracy (90%), sensitivity (92%), precision (92%), and an AUC of 0.96. This work highlights the value of combining structured visual and textual representations in improving diagnostic accuracy and interpretability in dental radiology. The approach offers a promising direction for the development of context-aware, AI-assisted diagnostic tools in pediatric dental care.

Deep Learning for Automated Prediction of Sphenoid Sinus Pneumatization in Computed Tomography.

Alamer A, Salim O, Alharbi F, Alsaleem F, Almuqbil A, Alhassoon K, Alsunaydih F

pubmed logopapersMay 22 2025
The sphenoid sinus is an important access point for trans-sphenoidal surgeries, but variations in its pneumatization may complicate surgical safety. Deep learning can be used to identify these anatomical variations. We developed a convolutional neural network (CNN) model for the automated prediction of sphenoid sinus pneumatization patterns in computed tomography (CT) scans. This model was tested on mid-sagittal CT images. Two radiologists labeled all CT images into four pneumatization patterns: Conchal (type I), presellar (type II), sellar (type III), and postsellar (type IV). We then augmented the training set to address the limited size and imbalanced nature of the data. The initial dataset included 249 CT images, divided into training (n = 174) and test (n = 75) datasets. The training dataset was augmented to 378 images. Following augmentation, the overall diagnostic accuracy of the model improved from 76.71% to 84%, with an area under the curve (AUC) of 0.84, indicating very good diagnostic performance. Subgroup analysis showed excellent results for type IV, with the highest AUC of 0.93, perfect sensitivity (100%), and an F1-score of 0.94. The model also performed robustly for type I, achieving an accuracy of 97.33% and high specificity (99%). These metrics highlight the model's potential for reliable clinical application. The proposed CNN model demonstrates very good diagnostic accuracy in identifying various sphenoid sinus pneumatization patterns, particularly excelling in type IV, which is crucial for endoscopic sinus surgery due to its higher risk of surgical complications. By assisting radiologists and surgeons, this model enhances the safety of transsphenoidal surgery, highlighting its value, novelty, and applicability in clinical settings.

Patient Reactions to Artificial Intelligence-Clinician Discrepancies: Web-Based Randomized Experiment.

Madanay F, O'Donohue LS, Zikmund-Fisher BJ

pubmed logopapersMay 22 2025
As the US Food and Drug Administration (FDA)-approved use of artificial intelligence (AI) for medical imaging rises, radiologists are increasingly integrating AI into their clinical practices. In lung cancer screening, diagnostic AI offers a second set of eyes with the potential to detect cancer earlier than human radiologists. Despite AI's promise, a potential problem with its integration is the erosion of patient confidence in clinician expertise when there is a discrepancy between the radiologist's and the AI's interpretation of the imaging findings. We examined how discrepancies between AI-derived recommendations and radiologists' recommendations affect patients' agreement with radiologists' recommendations and satisfaction with their radiologists. We also analyzed how patients' medical maximizing-minimizing preferences moderate these relationships. We conducted a randomized, between-subjects experiment with 1606 US adult participants. Assuming the role of patients, participants imagined undergoing a low-dose computerized tomography scan for lung cancer screening and receiving results and recommendations from (1) a radiologist only, (2) AI and a radiologist in agreement, (3) a radiologist who recommended more testing than AI (ie, radiologist overcalled AI), or (4) a radiologist who recommended less testing than AI (ie, radiologist undercalled AI). Participants rated the radiologist on three criteria: agreement with the radiologist's recommendation, how likely they would be to recommend the radiologist to family and friends, and how good of a provider they perceived the radiologist to be. We measured medical maximizing-minimizing preferences and categorized participants as maximizers (ie, those who seek aggressive intervention), minimizers (ie, those who prefer no or passive intervention), and neutrals (ie, those in the middle). Participants' agreement with the radiologist's recommendation was significantly lower when the radiologist undercalled AI (mean 4.01, SE 0.07, P<.001) than in the other 3 conditions, with no significant differences among them (radiologist overcalled AI [mean 4.63, SE 0.06], agreed with AI [mean 4.55, SE 0.07], or had no AI [mean 4.57, SE 0.06]). Similarly, participants were least likely to recommend (P<.001) and positively rate (P<.001) the radiologist who undercalled AI, with no significant differences among the other conditions. Maximizers agreed with the radiologist who overcalled AI (β=0.82, SE 0.14; P<.001) and disagreed with the radiologist who undercalled AI (β=-0.47, SE 0.14; P=.001). However, whereas minimizers disagreed with the radiologist who overcalled AI (β=-0.43, SE 0.18, P=.02), they did not significantly agree with the radiologist who undercalled AI (β=0.14, SE 0.17, P=.41). Radiologists who recommend less testing than AI may face decreased patient confidence in their expertise, but they may not face this same penalty for giving more aggressive recommendations than AI. Patients' reactions may depend in part on whether their general preferences to maximize or minimize align with the radiologists' recommendations. Future research should test communication strategies for radiologists' disclosure of AI discrepancies to patients.

CT-Agent: A Multimodal-LLM Agent for 3D CT Radiology Question Answering

Yuren Mao, Wenyi Xu, Yuyang Qin, Yunjun Gao

arxiv logopreprintMay 22 2025
Computed Tomography (CT) scan, which produces 3D volumetric medical data that can be viewed as hundreds of cross-sectional images (a.k.a. slices), provides detailed anatomical information for diagnosis. For radiologists, creating CT radiology reports is time-consuming and error-prone. A visual question answering (VQA) system that can answer radiologists' questions about some anatomical regions on the CT scan and even automatically generate a radiology report is urgently needed. However, existing VQA systems cannot adequately handle the CT radiology question answering (CTQA) task for: (1) anatomic complexity makes CT images difficult to understand; (2) spatial relationship across hundreds slices is difficult to capture. To address these issues, this paper proposes CT-Agent, a multimodal agentic framework for CTQA. CT-Agent adopts anatomically independent tools to break down the anatomic complexity; furthermore, it efficiently captures the across-slice spatial relationship with a global-local token compression strategy. Experimental results on two 3D chest CT datasets, CT-RATE and RadGenome-ChestCT, verify the superior performance of CT-Agent.

SAMba-UNet: Synergizing SAM2 and Mamba in UNet with Heterogeneous Aggregation for Cardiac MRI Segmentation

Guohao Huo, Ruiting Dai, Hao Tang

arxiv logopreprintMay 22 2025
To address the challenge of complex pathological feature extraction in automated cardiac MRI segmentation, this study proposes an innovative dual-encoder architecture named SAMba-UNet. The framework achieves cross-modal feature collaborative learning by integrating the vision foundation model SAM2, the state-space model Mamba, and the classical UNet. To mitigate domain discrepancies between medical and natural images, a Dynamic Feature Fusion Refiner is designed, which enhances small lesion feature extraction through multi-scale pooling and a dual-path calibration mechanism across channel and spatial dimensions. Furthermore, a Heterogeneous Omni-Attention Convergence Module (HOACM) is introduced, combining global contextual attention with branch-selective emphasis mechanisms to effectively fuse SAM2's local positional semantics and Mamba's long-range dependency modeling capabilities. Experiments on the ACDC cardiac MRI dataset demonstrate that the proposed model achieves a Dice coefficient of 0.9103 and an HD95 boundary error of 1.0859 mm, significantly outperforming existing methods, particularly in boundary localization for complex pathological structures such as right ventricular anomalies. This work provides an efficient and reliable solution for automated cardiac disease diagnosis, and the code will be open-sourced.

CMRINet: Joint Groupwise Registration and Segmentation for Cardiac Function Quantification from Cine-MRI

Mohamed S. Elmahdy, Marius Staring, Patrick J. H. de Koning, Samer Alabed, Mahan Salehi, Faisal Alandejani, Michael Sharkey, Ziad Aldabbagh, Andrew J. Swift, Rob J. van der Geest

arxiv logopreprintMay 22 2025
Accurate and efficient quantification of cardiac function is essential for the estimation of prognosis of cardiovascular diseases (CVDs). One of the most commonly used metrics for evaluating cardiac pumping performance is left ventricular ejection fraction (LVEF). However, LVEF can be affected by factors such as inter-observer variability and varying pre-load and after-load conditions, which can reduce its reproducibility. Additionally, cardiac dysfunction may not always manifest as alterations in LVEF, such as in heart failure and cardiotoxicity diseases. An alternative measure that can provide a relatively load-independent quantitative assessment of myocardial contractility is myocardial strain and strain rate. By using LVEF in combination with myocardial strain, it is possible to obtain a thorough description of cardiac function. Automated estimation of LVEF and other volumetric measures from cine-MRI sequences can be achieved through segmentation models, while strain calculation requires the estimation of tissue displacement between sequential frames, which can be accomplished using registration models. These tasks are often performed separately, potentially limiting the assessment of cardiac function. To address this issue, in this study we propose an end-to-end deep learning (DL) model that jointly estimates groupwise (GW) registration and segmentation for cardiac cine-MRI images. The proposed anatomically-guided Deep GW network was trained and validated on a large dataset of 4-chamber view cine-MRI image series of 374 subjects. A quantitative comparison with conventional GW registration using elastix and two DL-based methods showed that the proposed model improved performance and substantially reduced computation time.

SD-MAD: Sign-Driven Few-shot Multi-Anomaly Detection in Medical Images

Kaiyu Guo, Tan Pan, Chen Jiang, Zijian Wang, Brian C. Lovell, Limei Han, Yuan Cheng, Mahsa Baktashmotlagh

arxiv logopreprintMay 22 2025
Medical anomaly detection (AD) is crucial for early clinical intervention, yet it faces challenges due to limited access to high-quality medical imaging data, caused by privacy concerns and data silos. Few-shot learning has emerged as a promising approach to alleviate these limitations by leveraging the large-scale prior knowledge embedded in vision-language models (VLMs). Recent advancements in few-shot medical AD have treated normal and abnormal cases as a one-class classification problem, often overlooking the distinction among multiple anomaly categories. Thus, in this paper, we propose a framework tailored for few-shot medical anomaly detection in the scenario where the identification of multiple anomaly categories is required. To capture the detailed radiological signs of medical anomaly categories, our framework incorporates diverse textual descriptions for each category generated by a Large-Language model, under the assumption that different anomalies in medical images may share common radiological signs in each category. Specifically, we introduce SD-MAD, a two-stage Sign-Driven few-shot Multi-Anomaly Detection framework: (i) Radiological signs are aligned with anomaly categories by amplifying inter-anomaly discrepancy; (ii) Aligned signs are selected further to mitigate the effect of the under-fitting and uncertain-sample issue caused by limited medical data, employing an automatic sign selection strategy at inference. Moreover, we propose three protocols to comprehensively quantify the performance of multi-anomaly detection. Extensive experiments illustrate the effectiveness of our method.

On factors that influence deep learning-based dose prediction of head and neck tumors.

Gao R, Mody P, Rao C, Dankers F, Staring M

pubmed logopapersMay 22 2025
<i>Objective.</i>This study investigates key factors influencing deep learning-based dose prediction models for head and neck cancer radiation therapy. The goal is to evaluate model accuracy, robustness, and computational efficiency, and to identify key components necessary for optimal performance.<i>Approach.</i>We systematically analyze the impact of input and dose grid resolution, input type, loss function, model architecture, and noise on model performance. Two datasets are used: a public dataset (OpenKBP) and an in-house clinical dataset. Model performance is primarily evaluated using two metrics: dose score and dose-volume histogram (DVH) score.<i>Main results.</i>High-resolution inputs improve prediction accuracy (dose score and DVH score) by 8.6%-13.5% compared to low resolution. Using a combination of CT, planning target volumes, and organs-at-risk as input significantly enhances accuracy, with improvements of 57.4%-86.8% over using CT alone. Integrating mean absolute error (MAE) loss with value-based and criteria-based DVH loss functions further boosts DVH score by 7.2%-7.5% compared to MAE loss alone. In the robustness analysis, most models show minimal degradation under Poisson noise (0-0.3 Gy) but are more susceptible to adversarial noise (0.2-7.8 Gy). Notably, certain models, such as SwinUNETR, demonstrate superior robustness against adversarial perturbations.<i>Significance.</i>These findings highlight the importance of optimizing deep learning models and provide valuable guidance for achieving more accurate and reliable radiotherapy dose prediction.
Page 405 of 4524519 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.