Sort by:
Page 40 of 58575 results

Enhancing diagnostic accuracy of thyroid nodules: integrating self-learning and artificial intelligence in clinical training.

Kim D, Hwang YA, Kim Y, Lee HS, Lee E, Lee H, Yoon JH, Park VY, Rho M, Yoon J, Lee SE, Kwak JY

pubmed logopapersJun 1 2025
This study explores a self-learning method as an auxiliary approach in residency training for distinguishing between benign and malignant thyroid nodules. Conducted from March to December 2022, internal medicine residents underwent three repeated learning sessions with a "learning set" comprising 3000 thyroid nodule images. Diagnostic performances for internal medicine residents were assessed before the study, after every learning session, and for radiology residents before and after one-on-one education, using a "test set," comprising 120 thyroid nodule images. Finally, all residents repeated the same test using artificial intelligence computer-assisted diagnosis (AI-CAD). Twenty-one internal medicine and eight radiology residents participated. Initially, internal medicine residents had a lower area under the receiver operating characteristic curve (AUROC) than radiology residents (0.578 vs. 0.701, P < 0.001), improving post-learning (0.578 to 0.709, P < 0.001) to a comparable level with radiology residents (0.709 vs. 0.735, P = 0.17). Further improvement occurred with AI-CAD for both group (0.709 to 0.755, P < 0.001; 0.735 to 0.768, P = 0.03). The proposed iterative self-learning method using a large volume of ultrasonographic images can assist beginners, such as residents, in thyroid imaging to differentiate benign and malignant thyroid nodules. Additionally, AI-CAD can improve the diagnostic performance across varied levels of experience in thyroid imaging.

Data Augmentation for Medical Image Classification Based on Gaussian Laplacian Pyramid Blending With a Similarity Measure.

Kumar A, Sharma A, Singh AK, Singh SK, Saxena S

pubmed logopapersJun 1 2025
Breast cancer is a devastating disease that affects women worldwide, and computer-aided algorithms have shown potential in automating cancer diagnosis. Recently Generative Artificial Intelligence (GenAI) opens new possibilities for addressing the challenges of labeled data scarcity and accurate prediction in critical applications. However, a lack of diversity, as well as unrealistic and unreliable data, have a detrimental impact on performance. Therefore, this study proposes an augmentation scheme to address the scarcity of labeled data and data imbalance in medical datasets. This approach integrates the concepts of the Gaussian-Laplacian pyramid and pyramid blending with similarity measures. In order to maintain the structural properties of images and capture inter-variability of patient images of the same category similarity-metric-based intermixing has been introduced. It helps to maintain the overall quality and integrity of the dataset. Subsequently, deep learning approach with significant modification, that leverages transfer learning through the usage of concatenated pre-trained models is applied to classify breast cancer histopathological images. The effectiveness of the proposal, including the impact of data augmentation, is demonstrated through a detailed analysis of three different medical datasets, showing significant performance improvement over baseline models. The proposal has the potential to contribute to the development of more accurate and reliable approach for breast cancer diagnosis.

P2TC: A Lightweight Pyramid Pooling Transformer-CNN Network for Accurate 3D Whole Heart Segmentation.

Cui H, Wang Y, Zheng F, Li Y, Zhang Y, Xia Y

pubmed logopapersJun 1 2025
Cardiovascular disease is a leading global cause of death, requiring accurate heart segmentation for diagnosis and surgical planning. Deep learning methods have been demonstrated to achieve superior performances in cardiac structures segmentation. However, there are still limitations in 3D whole heart segmentation, such as inadequate spatial context modeling, difficulty in capturing long-distance dependencies, high computational complexity, and limited representation of local high-level semantic information. To tackle the above problems, we propose a lightweight Pyramid Pooling Transformer-CNN (P2TC) network for accurate 3D whole heart segmentation. The proposed architecture comprises a dual encoder-decoder structure with a 3D pyramid pooling Transformer for multi-scale information fusion and a lightweight large-kernel Convolutional Neural Network (CNN) for local feature extraction. The decoder has two branches for precise segmentation and contextual residual handling. The first branch is used to generate segmentation masks for pixel-level classification based on the features extracted by the encoder to achieve accurate segmentation of cardiac structures. The second branch highlights contextual residuals across slices, enabling the network to better handle variations and boundaries. Extensive experimental results on the Multi-Modality Whole Heart Segmentation (MM-WHS) 2017 challenge dataset demonstrate that P2TC outperforms the most advanced methods, achieving the Dice scores of 92.6% and 88.1% in Computed Tomography (CT) and Magnetic Resonance Imaging (MRI) modalities respectively, which surpasses the baseline model by 1.5% and 1.7%, and achieves state-of-the-art segmentation results.

Network Occlusion Sensitivity Analysis Identifies Regional Contributions to Brain Age Prediction.

He L, Wang S, Chen C, Wang Y, Fan Q, Chu C, Fan L, Xu J

pubmed logopapersJun 1 2025
Deep learning frameworks utilizing convolutional neural networks (CNNs) have frequently been used for brain age prediction and have achieved outstanding performance. Nevertheless, deep learning remains a black box as it is hard to interpret which brain parts contribute significantly to the predictions. To tackle this challenge, we first trained a lightweight, fully CNN model for brain age estimation on a large sample data set (N = 3054, age range = [8,80 years]) and tested it on an independent data set (N = 555, age range = [8,80 years]). We then developed an interpretable scheme combining network occlusion sensitivity analysis (NOSA) with a fine-grained human brain atlas to uncover the learned invariance of the model. Our findings show that the dorsolateral, dorsomedial frontal cortex, anterior cingulate cortex, and thalamus had the highest contributions to age prediction across the lifespan. More interestingly, we observed that different regions showed divergent patterns in their predictions for specific age groups and that the bilateral hemispheres contributed differently to the predictions. Regions in the frontal lobe were essential predictors in both the developmental and aging stages, with the thalamus remaining relatively stable and saliently correlated with other regional changes throughout the lifespan. The lateral and medial temporal brain regions gradually became involved during the aging phase. At the network level, the frontoparietal and the default mode networks show an inverted U-shape contribution from the developmental to the aging stages. The framework could identify regional contributions to the brain age prediction model, which could help increase the model interpretability when serving as an aging biomarker.

<i>Radiology: Cardiothoracic Imaging</i> Highlights 2024.

Catania R, Mukherjee A, Chamberlin JH, Calle F, Philomina P, Mastrodicasa D, Allen BD, Suchá D, Abbara S, Hanneman K

pubmed logopapersJun 1 2025
<i>Radiology: Cardiothoracic Imaging</i> publishes research, technical developments, and reviews related to cardiac, vascular, and thoracic imaging. The current review article, led by the <i>Radiology: Cardiothoracic Imaging</i> trainee editorial board, highlights the most impactful articles published in the journal between November 2023 and October 2024. The review encompasses various aspects of cardiac, vascular, and thoracic imaging related to coronary artery disease, cardiac MRI, valvular imaging, congenital and inherited heart diseases, thoracic imaging, lung cancer, artificial intelligence, and health services research. Key highlights include the role of CT fractional flow reserve analysis to guide patient management, the role of MRI elastography in identifying age-related myocardial stiffness associated with increased risk of heart failure, review of MRI in patients with cardiovascular implantable electronic devices and fractured or abandoned leads, imaging of mitral annular disjunction, specificity of the Lung Imaging Reporting and Data System version 2022 for detecting malignant airway nodules, and a radiomics-based reinforcement learning model to analyze serial low-dose CT scans in lung cancer screening. Ongoing research and future directions include artificial intelligence tools for applications such as plaque quantification using coronary CT angiography and growing understanding of the interconnectedness of environmental sustainability and cardiovascular imaging. <b>Keywords:</b> CT, MRI, CT-Coronary Angiography, Cardiac, Pulmonary, Coronary Arteries, Heart, Lung, Mediastinum, Mitral Valve, Aortic Valve, Artificial Intelligence © RSNA, 2025.

Aiding Medical Diagnosis through Image Synthesis and Classification

Kanishk Choudhary

arxiv logopreprintJun 1 2025
Medical professionals, especially those in training, often depend on visual reference materials to support an accurate diagnosis and develop pattern recognition skills. However, existing resources may lack the diversity and accessibility needed for broad and effective clinical learning. This paper presents a system designed to generate realistic medical images from textual descriptions and validate their accuracy through a classification model. A pretrained stable diffusion model was fine-tuned using Low-Rank Adaptation (LoRA) on the PathMNIST dataset, consisting of nine colorectal histopathology tissue types. The generative model was trained multiple times using different training parameter configurations, guided by domain-specific prompts to capture meaningful features. To ensure quality control, a ResNet-18 classification model was trained on the same dataset, achieving 99.76% accuracy in detecting the correct label of a colorectal histopathological medical image. Generated images were then filtered using the trained classifier and an iterative process, where inaccurate outputs were discarded and regenerated until they were correctly classified. The highest performing version of the generative model from experimentation achieved an F1 score of 0.6727, with precision and recall scores of 0.6817 and 0.7111, respectively. Some types of tissue, such as adipose tissue and lymphocytes, reached perfect classification scores, while others proved more challenging due to structural complexity. The self-validating approach created demonstrates a reliable method for synthesizing domain-specific medical images because of high accuracy in both the generation and classification portions of the system, with potential applications in both diagnostic support and clinical education. Future work includes improving prompt-specific accuracy and extending the system to other areas of medical imaging.

Revolutionizing Radiology Workflow with Factual and Efficient CXR Report Generation

Pimchanok Sukjai, Apiradee Boonmee

arxiv logopreprintJun 1 2025
The escalating demand for medical image interpretation underscores the critical need for advanced artificial intelligence solutions to enhance the efficiency and accuracy of radiological diagnoses. This paper introduces CXR-PathFinder, a novel Large Language Model (LLM)-centric foundation model specifically engineered for automated chest X-ray (CXR) report generation. We propose a unique training paradigm, Clinician-Guided Adversarial Fine-Tuning (CGAFT), which meticulously integrates expert clinical feedback into an adversarial learning framework to mitigate factual inconsistencies and improve diagnostic precision. Complementing this, our Knowledge Graph Augmentation Module (KGAM) acts as an inference-time safeguard, dynamically verifying generated medical statements against authoritative knowledge bases to minimize hallucinations and ensure standardized terminology. Leveraging a comprehensive dataset of millions of paired CXR images and expert reports, our experiments demonstrate that CXR-PathFinder significantly outperforms existing state-of-the-art medical vision-language models across various quantitative metrics, including clinical accuracy (Macro F1 (14): 46.5, Micro F1 (14): 59.5). Furthermore, blinded human evaluation by board-certified radiologists confirms CXR-PathFinder's superior clinical utility, completeness, and accuracy, establishing its potential as a reliable and efficient aid for radiological practice. The developed method effectively balances high diagnostic fidelity with computational efficiency, providing a robust solution for automated medical report generation.

Adaptive Breast MRI Scanning Using AI.

Eskreis-Winkler S, Bhowmik A, Kelly LH, Lo Gullo R, D'Alessio D, Belen K, Hogan MP, Saphier NB, Sevilimedu V, Sung JS, Comstock CE, Sutton EJ, Pinker K

pubmed logopapersJun 1 2025
Background MRI protocols typically involve many imaging sequences and often require too much time. Purpose To simulate artificial intelligence (AI)-directed stratified scanning for screening breast MRI with various triage thresholds and evaluate its diagnostic performance against that of the full breast MRI protocol. Materials and Methods This retrospective reader study included consecutive contrast-enhanced screening breast MRI examinations performed between January 2013 and January 2019 at three regional cancer sites. In this simulation study, an in-house AI tool generated a suspicion score for subtraction maximum intensity projection images during a given MRI examination, and the score was used to determine whether to proceed with the full MRI protocol or end the examination early (abbreviated breast MRI [AB-MRI] protocol). Examinations with suspicion scores under the 50th percentile were read using both the AB-MRI protocol (ie, dynamic contrast-enhanced MRI scans only) and the full MRI protocol. Diagnostic performance metrics for screening with various AI triage thresholds were compared with those for screening without AI triage. Results Of 863 women (mean age, 52 years ± 10 [SD]; 1423 MRI examinations), 51 received a cancer diagnosis within 12 months of screening. The diagnostic performance metrics for AI-directed stratified scanning that triaged 50% of examinations to AB-MRI versus full MRI protocol scanning were as follows: sensitivity, 88.2% (45 of 51; 95% CI: 79.4, 97.1) versus 86.3% (44 of 51; 95% CI: 76.8, 95.7); specificity, 80.8% (1108 of 1372; 95% CI: 78.7, 82.8) versus 81.4% (1117 of 1372; 95% CI: 79.4, 83.5); positive predictive value 3 (ie, percent of biopsies yielding cancer), 23.6% (43 of 182; 95% CI: 17.5, 29.8) versus 24.7% (42 of 170; 95% CI: 18.2, 31.2); cancer detection rate (per 1000 examinations), 31.6 (95% CI: 22.5, 40.7) versus 30.9 (95% CI: 21.9, 39.9); and interval cancer rate (per 1000 examinations), 4.2 (95% CI: 0.9, 7.6) versus 4.9 (95% CI: 1.3, 8.6). Specificity decreased by no more than 2.7 percentage points with AI triage. There were no AI-triaged examinations for which conducting the full MRI protocol would have resulted in additional cancer detection. Conclusion AI-directed stratified MRI decreased simulated scan times while maintaining diagnostic performance. © RSNA, 2025 <i>Supplemental material is available for this article.</i> See also the editorial by Strand in this issue.

ChatGPT-4o's Performance in Brain Tumor Diagnosis and MRI Findings: A Comparative Analysis with Radiologists.

Ozenbas C, Engin D, Altinok T, Akcay E, Aktas U, Tabanli A

pubmed logopapersJun 1 2025
To evaluate the accuracy of ChatGPT-4o in identifying magnetic resonance imaging (MRI) findings and diagnosing brain tumors by comparing its performance with that of experienced radiologists. This retrospective study included 46 patients with pathologically confirmed brain tumors who underwent preoperative MRI between January 2021 and October 2024. Two experienced radiologists and ChatGPT 4o independently evaluated the anonymized MRI images. Eight questions focusing on MRI sequences, lesion characteristics, and diagnoses were answered. ChatGPT-4o's responses were compared to those of the radiologists and the pathology outcomes. Statistical analyses were performed, which included accuracy, sensitivity, specificity, and the McNemar test, with p<0.05 considered to indicate a statistically significant difference. ChatGPT-4o successfully identified 44 of the 46 (95.7%) lesions; it achieved 88.3% accuracy in identifying MRI sequences, 81% in perilesional edema, 79.5% in signal characteristics, and 82.2% in contrast enhancement. However, its accuracy in localizing lesions was 53.6% and that in distinguishing extra-axial from intra-axial lesions was 26.3%. As such, ChatGPT-4o achieved success rates of 56.8% and 29.5% for differential diagnoses and most likely diagnoses when compared to 93.2-90.9% and 70.5-65.9% for radiologists, respectively (p<0.005). ChatGPT-4o demonstrated high accuracy in identifying certain MRI features but underperformed in diagnostic tasks in comparison with the radiologists. Despite its current limitations, future updates and advancements have the potential to enable large language models to facilitate diagnosis and offer a reliable second opinion to radiologists.
Page 40 of 58575 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.