Sort by:
Page 4 of 65646 results

Machine learning in neuroimaging and computational pathophysiology of Parkinson's disease: A comprehensive review and meta-analysis.

Sharma K, Shanbhog M, Singh K

pubmed logopapersJul 1 2025
In recent years, machine learning and deep learning have shown potential for improving Parkinson's disease (PD) diagnosis, one of the most common neurodegenerative diseases. This comprehensive analysis examines machine learning and deep learning-based Parkinson's disease diagnosis using MRI, speech, and handwriting datasets. To thoroughly analyze PD, this study collected data from scientific literature, experimental investigations, publicly accessible datasets, and global health reports. This study examines the worldwide historical setting of Parkinson's disease, focusing on its increasing prevalence and inequities in treatment access across various regions. A comprehensive summary consolidates essential findings from clinical investigations and pertinent datasets related to Parkinson's disease management. The worldwide context, prospective treatments, therapies, and drugs for Parkinson's disease have been thoroughly examined. This analysis identifies significant research deficiencies and suggests future methods, emphasizing the necessity for more extensive and diverse datasets and improved model accessibility. The current study proposes the Meta-Park model for diagnosing Parkinson's disease, achieving training, testing, and validation accuracy of 97.67 %, 95 %, and 94.04 %. This method provides a dependable and scalable way to improve clinical decision-making in managing Parkinson's disease. This research seeks to provide innovative, data-driven decisions for early diagnosis and effective treatment by merging the proposed method with a thorough examination of existing interventions, providing renewed hope to patients and the medical community.

Artificial Intelligence in Prostate Cancer Diagnosis on Magnetic Resonance Imaging: Time for a New PARADIGM.

Ng AB, Giganti F, Kasivisvanathan V

pubmed logopapersJul 1 2025
Artificial intelligence (AI) may provide a solution for improving access to expert, timely, and accurate magnetic resonance imaging (MRI) interpretation. The PARADIGM trial will provide level 1 evidence on the role of AI in the diagnosis of prostate cancer on MRI.

Volumetric and Diffusion Tensor Imaging Abnormalities Are Associated With Behavioral Changes Post-Concussion in a Youth Pig Model of Mild Traumatic Brain Injury.

Sanjida I, Alesa N, Chenyang L, Jiangyang Z, Bianca DM, Ana V, Shaun S, Avner M, Kirk M, Aimee C, Jie H, Ricardo MA, Jane M, Galit P

pubmed logopapersJul 1 2025
Mild traumatic brain injury (mTBI) caused by sports-related incidents in children and youth often leads to prolonged cognitive impairments but remains difficult to diagnose. In order to identify clinically relevant imaging and behavioral biomarkers associated concussion, a closed-head mTBI was induced in adolescent pigs. Twelve (n = 4 male and n = 8 female), 16-week old Yucatan pigs were tested; n = 6 received mTBI and n = 6 received a sham procedure. T1-weighted imaging was used to assess volumetric alterations in different regions of the brain and diffusion tensor imaging (DTI) to examine microstructural damage in white matter. The pigs were imaged at 1- and 3-month post-injury. Neuropsychological screening for executive function and anxiety were performed before and in the months after the injury. The volumetric analysis showed significant longitudinal changes in pigs with mTBI compared with sham, which may be attributed to swelling and neuroinflammation. Fractional anisotropy (FA) values derived from DTI images demonstrated a 21% increase in corpus callosum from 1 to 3 months in mTBI pigs, which is significantly higher than in sham pigs (4.8%). Additionally, comparisons of the left and right internal capsules revealed a decrease in FA in the right internal capsule for mTBI pigs, which may indicate demyelination. The neuroimaging results suggest that the injury had disrupted the maturation of white and gray matter in the developing brain. Behavioral testing showed that compare to sham pigs, mTBI pigs exhibited 23% increased activity in open field tests, 35% incraesed escape attempts, along with a 65% decrease in interaction with the novel object, suggesting possible memory impairments and cognitive deficits. The correlation analysis showed an associations between volumetric features and behavioral metrics. Furthermore, a machine learning model, which integrated FA, volumetric features and behavioral test metrics, achieved 67% accuracy, indicating its potential to differentiate the two groups. Thus, the imaging biomarkers were indicative of long-term behavioral impairments and could be crucial to the clinical management of concussion in youth.

A deep learning framework for reconstructing Breast Amide Proton Transfer weighted imaging sequences from sparse frequency offsets to dense frequency offsets.

Yang Q, Su S, Zhang T, Wang M, Dou W, Li K, Ren Y, Zheng Y, Wang M, Xu Y, Sun Y, Liu Z, Tan T

pubmed logopapersJul 1 2025
Amide Proton Transfer (APT) technique is a novel functional MRI technique that enables quantification of protein metabolism, but its wide application is largely limited in clinical settings by its long acquisition time. One way to reduce the scanning time is to obtain fewer frequency offset images during image acquisition. However, sparse frequency offset images are not inadequate to fit the z-spectral, a curve essential to quantifying the APT effect, which might compromise its quantification. In our study, we develop a deep learning-based model that allows for reconstructing dense frequency offsets from sparse ones, potentially reducing scanning time. We propose to leverage time-series convolution to extract both short and long-range spatial and frequency features of the APT imaging sequence. Our proposed model outperforms other seq2seq models, achieving superior reconstruction with a peak signal-to-noise ratio of 45.8 (95% confidence interval (CI): [44.9 46.7]), and a structural similarity index of 0.989 (95% CI:[0.987 0.993]) for the tumor region. We have integrated a weighted layer into our model to evaluate the impact of individual frequency offset on the reconstruction process. The weights assigned to the frequency offset at ±6.5 ppm, 0 ppm, and 3.5 ppm demonstrate higher significance as learned by the model. Experimental results demonstrate that our proposed model effectively reconstructs dense frequency offsets (n = 29, from 7 to -7 with 0.5 ppm as an interval) from data with 21 frequency offsets, reducing scanning time by 25%. This work presents a method for shortening the APT imaging acquisition time, offering potential guidance for parameter settings in APT imaging and serving as a valuable reference for clinicians.

ConnectomeAE: Multimodal brain connectome-based dual-branch autoencoder and its application in the diagnosis of brain diseases.

Zheng Q, Nan P, Cui Y, Li L

pubmed logopapersJul 1 2025
Exploring the dependencies between multimodal brain networks and integrating node features to enhance brain disease diagnosis remains a significant challenge. Some work has examined only brain connectivity changes in patients, ignoring important information about radiomics features such as shape and texture of individual brain regions in structural images. To this end, this study proposed a novel deep learning approach to integrate multimodal brain connectome information and regional radiomics features for brain disease diagnosis. A dual-branch autoencoder (ConnectomeAE) based on multimodal brain connectomes was proposed for brain disease diagnosis. Specifically, a matrix of radiomics feature extracted from structural magnetic resonance image (MRI) was used as Rad_AE branch inputs for learning important brain region features. Functional brain network built from functional MRI image was used as inputs to Cycle_AE for capturing brain disease-related connections. By separately learning node features and connection features from multimodal brain networks, the method demonstrates strong adaptability in diagnosing different brain diseases. ConnectomeAE was validated on two publicly available datasets. The experimental results show that ConnectomeAE achieved excellent diagnostic performance with an accuracy of 70.7 % for autism spectrum disorder and 90.5 % for Alzheimer's disease. A comparison of training time with other methods indicated that ConnectomeAE exhibits simplicity and efficiency suitable for clinical applications. Furthermore, the interpretability analysis of the model aligned with previous studies, further supporting the biological basis of ConnectomeAE. ConnectomeAE could effectively leverage the complementary information between multimodal brain connectomes for brain disease diagnosis. By separately learning radiomic node features and connectivity features, ConnectomeAE demonstrated good adaptability to different brain disease classification tasks.

Assessment of biventricular cardiac function using free-breathing artificial intelligence cine with motion correction: Comparison with standard multiple breath-holding cine.

Ran L, Yan X, Zhao Y, Yang Z, Chen Z, Jia F, Song X, Huang L, Xia L

pubmed logopapersJul 1 2025
To assess the image quality and biventricular function utilizing a free-breathing artificial intelligence cine method with motion correction (FB AI MOCO). A total of 72 participants (mean age 38.3 ± 15.4 years, 40 males) prospectively enrolled in this single-center, cross-sectional study underwent cine scans using standard breath-holding (BH) cine and FB AI MOCO cine at 3.0 Tesla. The image quality of the cine images was evaluated with a 5-point Ordinal Likert scale based on blood-pool to myocardium contrast, endocardial edge definition, and artifacts, and overall quality score was calculated by the equal weight average of all three criteria, apparent signal to noise ratio (aSNR), estimated contrast to noise ratio (eCNR) were assessed. Biventricular functional parameters including Left Ventricular (LV), Right Ventricular (RV) End-Diastolic Volume (EDV), End-Systolic Volume (ESV), Stroke Volume (SV), Ejection Fraction (EF), and LV End-Diastolic Mass (LVEDM) were also assessed. Comparison between two sequences was assessed using paired t-test and Wilcoxon signed-rank test, correlation using Pearson correlation. The agreement of quantitative parameters was assessed using intraclass correlation coefficient (ICC) and Bland-Altman analysis. P < 0.05 was statistically significant. The total acquisition time of the entire stack for FB AI MOCO cine (14.7 s ± 1.9 s) was notably shorter than that for standard BH cine (82.6 s ± 11.9 s, P < 0.001). The aSNR between FB AI MOCO cine and standard BH cine has no significantly difference (76.7 ± 20.7 vs. 79.8 ± 20.7, P = 0.193). The eCNR of FB AI MOCO cine was higher than standard BH cine (191.6 ± 54.0 vs. 155.8 ± 68.4, P < 0.001), as was the scores of blood-pool to myocardium contrast (4.6 ± 0.5 vs. 4.4 ± 0.6, P = 0.003). Qualitative scores including endocardial edge definition (4.2 ± 0.5 vs. 4.3 ± 0.7, P = 0.123), artifact presence (4.3 ± 0.6 vs. 4.1 ± 0.8, P = 0.085), and overall image quality (4.4 ± 0.4 vs. 4.3 ± 0.6, P = 0.448), showed no significant differences between the two methods. Representative RV and LV functional parameters - including RVEDV (102.2 (86.4, 120.4) ml vs. 104.0 (88.5, 120.3) ml, P = 0.294), RVEF (31.0 ± 11.1 % vs. 31.2 ± 11.0 %, P = 0.570), and LVEDV (106.2 (86.7, 131.3) ml vs. 105.8 (84.4, 130.3) ml, P = 0.450) - also did not differ significantly between the two methods. Strong correlations (r > 0.900) and excellent agreement (ICC > 0.900) were found for all biventricular functional parameters between the two sequences. In subgroups with reduced LVEF (<50 %, n = 24) or elevated heart rate (≥80  bpm, n = 17), no significant differences were observed in any biventricular functional metrics (P > 0.05 for all) between the two sequences. In comparison to multiple BH cine, the FB AI MOCO cine achieved comparable image quality and biventricular functional parameters with shorter scan times, suggesting its promising potential for clinical applications.

Challenges, optimization strategies, and future horizons of advanced deep learning approaches for brain lesion segmentation.

Zaman A, Yassin MM, Mehmud I, Cao A, Lu J, Hassan H, Kang Y

pubmed logopapersJul 1 2025
Brain lesion segmentation is challenging in medical image analysis, aiming to delineate lesion regions precisely. Deep learning (DL) techniques have recently demonstrated promising results across various computer vision tasks, including semantic segmentation, object detection, and image classification. This paper offers an overview of recent DL algorithms for brain tumor and stroke segmentation, drawing on literature from 2021 to 2024. It highlights the strengths, limitations, current research challenges, and unexplored areas in imaging-based brain lesion classification based on insights from over 250 recent review papers. Techniques addressing difficulties like class imbalance and multi-modalities are presented. Optimization methods for improving performance regarding computational and structural complexity and processing speed are discussed. These include lightweight neural networks, multilayer architectures, and computationally efficient, highly accurate network designs. The paper also reviews generic and latest frameworks of different brain lesion detection techniques and highlights publicly available benchmark datasets and their issues. Furthermore, open research areas, application prospects, and future directions for DL-based brain lesion classification are discussed. Future directions include integrating neural architecture search methods with domain knowledge, predicting patient survival levels, and learning to separate brain lesions using patient statistics. To ensure patient privacy, future research is anticipated to explore privacy-preserving learning frameworks. Overall, the presented suggestions serve as a guideline for researchers and system designers involved in brain lesion detection and stroke segmentation tasks.

Establishment and evaluation of an automatic multi?sequence MRI segmentation model of primary central nervous system lymphoma based on the nnU?Net deep learning network method.

Wang T, Tang X, Du J, Jia Y, Mou W, Lu G

pubmed logopapersJul 1 2025
Accurate quantitative assessment using gadolinium-contrast magnetic resonance imaging (MRI) is crucial in therapy planning, surveillance and prognostic assessment of primary central nervous system lymphoma (PCNSL). The present study aimed to develop a multimodal artificial intelligence deep learning segmentation model to address the challenges associated with traditional 2D measurements and manual volume assessments in MRI. Data from 49 pathologically-confirmed patients with PCNSL from six Chinese medical centers were analyzed, and regions of interest were manually segmented on contrast-enhanced T1-weighted and T2-weighted MRI scans for each patient, followed by fully automated voxel-wise segmentation of tumor components using a 3-dimenstional convolutional deep neural network. Furthermore, the efficiency of the model was evaluated using practical indicators and its consistency and accuracy was compared with traditional methods. The performance of the models were assessed using the Dice similarity coefficient (DSC). The Mann-Whitney U test was used to compare continuous clinical variables and the χ<sup>2</sup> test was used for comparisons between categorical clinical variables. T1WI sequences exhibited the optimal performance (training dice: 0.923, testing dice: 0.830, outer validation dice: 0.801), while T2WI showed a relatively poor performance (training dice of 0.761, a testing dice of 0.647, and an outer validation dice of 0.643. In conclusion, the automatic multi-sequences MRI segmentation model for PCNSL in the present study displayed high spatial overlap ratio and similar tumor volume with routine manual segmentation, indicating its significant potential.

Quantitative Ischemic Lesions of Portable Low-Field Strength MRI Using Deep Learning-Based Super-Resolution.

Bian Y, Wang L, Li J, Yang X, Wang E, Li Y, Liu Y, Xiang L, Yang Q

pubmed logopapersJul 1 2025
Deep learning-based synthetic super-resolution magnetic resonance imaging (SynthMRI) may improve the quantitative lesion performance of portable low-field strength magnetic resonance imaging (LF-MRI). The aim of this study is to evaluate whether SynthMRI improves the diagnostic performance of LF-MRI in assessing ischemic lesions. We retrospectively included 178 stroke patients and 104 healthy controls with both LF-MRI and high-field strength magnetic resonance imaging (HF-MRI) examinations. Using HF-MRI as the ground truth, the deep learning-based super-resolution framework (SCUNet [Swin-Conv-UNet]) was pretrained using large-scale open-source data sets to generate SynthMRI images from LF-MRI images. Participants were split into a training set (64.2%) to fine-tune the pretrained SCUNet, and a testing set (35.8%) to evaluate the performance of SynthMRI. Sensitivity and specificity of LF-MRI and SynthMRI were assessed. Agreement with HF-MRI for Alberta Stroke Program Early CT Score in the anterior and posterior circulation (diffusion-weighted imaging-Alberta Stroke Program Early CT Score and diffusion-weighted imaging-posterior circulation Alberta Stroke Program Early CT Score) was evaluated using intraclass correlation coefficients (ICCs). Agreement with HF-MRI for lesion volume and mean apparent diffusion coefficient (ADC) within lesions was assessed using both ICCs and Pearson correlation coefficients. SynthMRI demonstrated significantly higher sensitivity and specificity than LF-MRI (89.0% [83.3%-94.6%] versus 77.1% [69.5%-84.7%]; <i>P</i><0.001 and 91.3% [84.7%-98.0%] versus 71.0% [60.3%-81.7%]; <i>P</i><0.001, respectively). The ICCs of diffusion-weighted imaging-Alberta Stroke Program Early CT Score between SynthMRI and HF-MRI were also better than that between LF-MRI and HF-MRI (0.952 [0.920-0.972] versus 0.797 [0.678-0.876], <i>P</i><0.001). For lesion volume and mean apparent diffusion coefficient within lesions, SynthMRI showed significantly higher agreement (<i>P</i><0.001) with HF-MRI (ICC>0.85, <i>r</i>>0.78) than LF-MRI (ICC>0.45, <i>r</i>>0.35). Furthermore, for lesions during various poststroke phases, SynthMRI exhibited significantly higher agreement with HF-MRI than LF-MRI during the early hyperacute and subacute phases. SynthMRI demonstrates high agreement with HF-MRI in detecting and quantifying ischemic lesions and is better than LF-MRI, particularly for lesions during the early hyperacute and subacute phases.
Page 4 of 65646 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.