Implementing Large Language Models in Health Care: Clinician-Focused Review With Interactive Guideline.
•papers•Jul 11 2025Large language models (LLMs) can generate outputs understandable by humans, such as answers to medical questions and radiology reports. With the rapid development of LLMs, clinicians face a growing challenge in determining the most suitable algorithms to support their work. We aimed to provide clinicians and other health care practitioners with systematic guidance in selecting an LLM that is relevant and appropriate to their needs and facilitate the integration process of LLMs in health care. We conducted a literature search of full-text publications in English on clinical applications of LLMs published between January 1, 2022, and March 31, 2025, on PubMed, ScienceDirect, Scopus, and IEEE Xplore. We excluded papers from journals below a set citation threshold, as well as papers that did not focus on LLMs, were not research based, or did not involve clinical applications. We also conducted a literature search on arXiv within the same investigated period and included papers on the clinical applications of innovative multimodal LLMs. This led to a total of 270 studies. We collected 330 LLMs and recorded their application frequency in clinical tasks and frequency of best performance in their context. On the basis of a 5-stage clinical workflow, we found that stages 2, 3, and 4 are key stages in the clinical workflow, involving numerous clinical subtasks and LLMs. However, the diversity of LLMs that may perform optimally in each context remains limited. GPT-3.5 and GPT-4 were the most versatile models in the 5-stage clinical workflow, applied to 52% (29/56) and 71% (40/56) of the clinical subtasks, respectively, and they performed best in 29% (16/56) and 54% (30/56) of the clinical subtasks, respectively. General-purpose LLMs may not perform well in specialized areas as they often require lightweight prompt engineering methods or fine-tuning techniques based on specific datasets to improve model performance. Most LLMs with multimodal abilities are closed-source models and, therefore, lack of transparency, model customization, and fine-tuning for specific clinical tasks and may also pose challenges regarding data protection and privacy, which are common requirements in clinical settings. In this review, we found that LLMs may help clinicians in a variety of clinical tasks. However, we did not find evidence of generalist clinical LLMs successfully applicable to a wide range of clinical tasks. Therefore, their clinical deployment remains challenging. On the basis of this review, we propose an interactive online guideline for clinicians to select suitable LLMs by clinical task. With a clinical perspective and free of unnecessary technical jargon, this guideline may be used as a reference to successfully apply LLMs in clinical settings.