Sort by:
Page 4 of 1091 results

Implementing Large Language Models in Health Care: Clinician-Focused Review With Interactive Guideline.

Li H, Fu JF, Python A

pubmed logopapersJul 11 2025
Large language models (LLMs) can generate outputs understandable by humans, such as answers to medical questions and radiology reports. With the rapid development of LLMs, clinicians face a growing challenge in determining the most suitable algorithms to support their work. We aimed to provide clinicians and other health care practitioners with systematic guidance in selecting an LLM that is relevant and appropriate to their needs and facilitate the integration process of LLMs in health care. We conducted a literature search of full-text publications in English on clinical applications of LLMs published between January 1, 2022, and March 31, 2025, on PubMed, ScienceDirect, Scopus, and IEEE Xplore. We excluded papers from journals below a set citation threshold, as well as papers that did not focus on LLMs, were not research based, or did not involve clinical applications. We also conducted a literature search on arXiv within the same investigated period and included papers on the clinical applications of innovative multimodal LLMs. This led to a total of 270 studies. We collected 330 LLMs and recorded their application frequency in clinical tasks and frequency of best performance in their context. On the basis of a 5-stage clinical workflow, we found that stages 2, 3, and 4 are key stages in the clinical workflow, involving numerous clinical subtasks and LLMs. However, the diversity of LLMs that may perform optimally in each context remains limited. GPT-3.5 and GPT-4 were the most versatile models in the 5-stage clinical workflow, applied to 52% (29/56) and 71% (40/56) of the clinical subtasks, respectively, and they performed best in 29% (16/56) and 54% (30/56) of the clinical subtasks, respectively. General-purpose LLMs may not perform well in specialized areas as they often require lightweight prompt engineering methods or fine-tuning techniques based on specific datasets to improve model performance. Most LLMs with multimodal abilities are closed-source models and, therefore, lack of transparency, model customization, and fine-tuning for specific clinical tasks and may also pose challenges regarding data protection and privacy, which are common requirements in clinical settings. In this review, we found that LLMs may help clinicians in a variety of clinical tasks. However, we did not find evidence of generalist clinical LLMs successfully applicable to a wide range of clinical tasks. Therefore, their clinical deployment remains challenging. On the basis of this review, we propose an interactive online guideline for clinicians to select suitable LLMs by clinical task. With a clinical perspective and free of unnecessary technical jargon, this guideline may be used as a reference to successfully apply LLMs in clinical settings.

Machine learning techniques for stroke prediction: A systematic review of algorithms, datasets, and regional gaps.

Soladoye AA, Aderinto N, Popoola MR, Adeyanju IA, Osonuga A, Olawade DB

pubmed logopapersJul 9 2025
Stroke is a leading cause of mortality and disability worldwide, with approximately 15 million people suffering strokes annually. Machine learning (ML) techniques have emerged as powerful tools for stroke prediction, enabling early identification of risk factors through data-driven approaches. However, the clinical utility and performance characteristics of these approaches require systematic evaluation. To systematically review and analyze ML techniques used for stroke prediction, systematically synthesize performance metrics across different prediction targets and data sources, evaluate their clinical applicability, and identify research trends focusing on patient population characteristics and stroke prevalence patterns. A systematic review was conducted following PRISMA guidelines. Five databases (Google Scholar, Lens, PubMed, ResearchGate, and Semantic Scholar) were searched for open-access publications on ML-based stroke prediction published between January 2013 and December 2024. Data were extracted on publication characteristics, datasets, ML methodologies, evaluation metrics, prediction targets (stroke occurrence vs. outcomes), data sources (EHR, imaging, biosignals), patient demographics, and stroke prevalence. Descriptive synthesis was performed due to substantial heterogeneity precluding quantitative meta-analysis. Fifty-eight studies were included, with peak publication output in 2021 (21 articles). Studies targeted three main prediction objectives: stroke occurrence prediction (n = 52, 62.7 %), stroke outcome prediction (n = 19, 22.9 %), and stroke type classification (n = 12, 14.4 %). Data sources included electronic health records (n = 48, 57.8 %), medical imaging (n = 21, 25.3 %), and biosignals (n = 14, 16.9 %). Systematic analysis revealed ensemble methods consistently achieved highest accuracies for stroke occurrence prediction (range: 90.4-97.8 %), while deep learning excelled in imaging-based applications. African populations, despite highest stroke mortality rates globally, were represented in fewer than 4 studies. ML techniques show promising results for stroke prediction. However, significant gaps exist in representation of high-risk populations and real-world clinical validation. Future research should prioritize population-specific model development and clinical implementation frameworks.

AI Revolution in Radiology, Radiation Oncology and Nuclear Medicine: Transforming and Innovating the Radiological Sciences.

Carriero S, Canella R, Cicchetti F, Angileri A, Bruno A, Biondetti P, Colciago RR, D'Antonio A, Della Pepa G, Grassi F, Granata V, Lanza C, Santicchia S, Miceli A, Piras A, Salvestrini V, Santo G, Pesapane F, Barile A, Carrafiello G, Giovagnoni A

pubmed logopapersJul 9 2025
The integration of artificial intelligence (AI) into clinical practice, particularly within radiology, nuclear medicine and radiation oncology, is transforming diagnostic and therapeutic processes. AI-driven tools, especially in deep learning and machine learning, have shown remarkable potential in enhancing image recognition, analysis and decision-making. This technological advancement allows for the automation of routine tasks, improved diagnostic accuracy, and the reduction of human error, leading to more efficient workflows. Moreover, the successful implementation of AI in healthcare requires comprehensive education and training for young clinicians, with a pressing need to incorporate AI into residency programmes, ensuring that future specialists are equipped with traditional skills and a deep understanding of AI technologies and their clinical applications. This includes knowledge of software, data analysis, imaging informatics and ethical considerations surrounding AI use in medicine. By fostering interdisciplinary integration and emphasising AI education, healthcare professionals can fully harness AI's potential to improve patient outcomes and advance the field of medical imaging and therapy. This review aims to evaluate how AI influences radiology, nuclear medicine and radiation oncology, while highlighting the necessity for specialised AI training in medical education to ensure its successful clinical integration.

Foundation models for radiology: fundamentals, applications, opportunities, challenges, risks, and prospects.

Akinci D'Antonoli T, Bluethgen C, Cuocolo R, Klontzas ME, Ponsiglione A, Kocak B

pubmed logopapersJul 8 2025
Foundation models (FMs) represent a significant evolution in artificial intelligence (AI), impacting diverse fields. Within radiology, this evolution offers greater adaptability, multimodal integration, and improved generalizability compared with traditional narrow AI. Utilizing large-scale pre-training and efficient fine-tuning, FMs can support diverse applications, including image interpretation, report generation, integrative diagnostics combining imaging with clinical/laboratory data, and synthetic data creation, holding significant promise for advancements in precision medicine. However, clinical translation of FMs faces several substantial challenges. Key concerns include the inherent opacity of model decision-making processes, environmental and social sustainability issues, risks to data privacy, complex ethical considerations, such as bias and fairness, and navigating the uncertainty of regulatory frameworks. Moreover, rigorous validation is essential to address inherent stochasticity and the risk of hallucination. This international collaborative effort provides a comprehensive overview of the fundamentals, applications, opportunities, challenges, and prospects of FMs, aiming to guide their responsible and effective adoption in radiology and healthcare.

Clinical obstacles to machine-learning POCUS adoption and system-wide AI implementation (The COMPASS-AI survey).

Wong A, Roslan NL, McDonald R, Noor J, Hutchings S, D'Costa P, Via G, Corradi F

pubmed logopapersJul 3 2025
Point-of-care ultrasound (POCUS) has become indispensable in various medical specialties. The integration of artificial intelligence (AI) and machine learning (ML) holds significant promise to enhance POCUS capabilities further. However, a comprehensive understanding of healthcare professionals' perspectives on this integration is lacking. This study aimed to investigate the global perceptions, familiarity, and adoption of AI in POCUS among healthcare professionals. An international, web-based survey was conducted among healthcare professionals involved in POCUS. The survey instrument included sections on demographics, familiarity with AI, perceived utility, barriers (technological, training, trust, workflow, legal/ethical), and overall perceptions regarding AI-assisted POCUS. The data was analysed by descriptive statistics, frequency distributions, and group comparisons (using chi-square/Fisher's exact test and t-test/Mann-Whitney U test). This study surveyed 1154 healthcare professionals on perceived barriers to implementing AI in point-of-care ultrasound. Despite general enthusiasm, with 81.1% of respondents expressing agreement or strong agreement, significant barriers were identified. The most frequently cited single greatest barriers were Training & Education (27.1%) and Clinical Validation & Evidence (17.5%). Analysis also revealed that perceptions of specific barriers vary significantly based on demographic factors, including region of practice, medical specialty, and years of healthcare experience. This novel global survey provides critical insights into the perceptions and adoption of AI in POCUS. Findings highlight considerable enthusiasm alongside crucial challenges, primarily concerning training, validation, guidelines, and support. Addressing these barriers is essential for the responsible and effective implementation of AI in POCUS.

Federated Learning in radiomics: A comprehensive meta-survey on medical image analysis.

Raza A, Guzzo A, Ianni M, Lappano R, Zanolini A, Maggiolini M, Fortino G

pubmed logopapersJul 1 2025
Federated Learning (FL) has emerged as a promising approach for collaborative medical image analysis while preserving data privacy, making it particularly suitable for radiomics tasks. This paper presents a systematic meta-analysis of recent surveys on Federated Learning in Medical Imaging (FL-MI), published in reputable venues over the past five years. We adopt the PRISMA methodology, categorizing and analyzing the existing body of research in FL-MI. Our analysis identifies common trends, challenges, and emerging strategies for implementing FL in medical imaging, including handling data heterogeneity, privacy concerns, and model performance in non-IID settings. The paper also highlights the most widely used datasets and a comparison of adopted machine learning models. Moreover, we examine FL frameworks in FL-MI applications, such as tumor detection, organ segmentation, and disease classification. We identify several research gaps, including the need for more robust privacy protection. Our findings provide a comprehensive overview of the current state of FL-MI and offer valuable directions for future research and development in this rapidly evolving field.

Diagnostic tools in respiratory medicine (Review).

Georgakopoulou VE, Spandidos DA, Corlateanu A

pubmed logopapersJul 1 2025
Recent advancements in diagnostic technologies have significantly transformed the landscape of respiratory medicine, aiming for early detection, improved specificity and personalized therapeutic strategies. Innovations in imaging such as multi-slice computed tomography (CT) scanners, high-resolution CT and magnetic resonance imaging (MRI) have revolutionized our ability to visualize and assess the structural and functional aspects of the respiratory system. These techniques are complemented by breakthroughs in molecular biology that have identified specific biomarkers and genetic determinants of respiratory diseases, enabling targeted diagnostic approaches. Additionally, functional tests including spirometry and exercise testing continue to provide valuable insights into pulmonary function and capacity. The integration of artificial intelligence is poised to further refine these diagnostic tools, enhancing their accuracy and efficiency. The present narrative review explores these developments and their impact on the management and outcomes of respiratory conditions, underscoring the ongoing shift towards more precise and less invasive diagnostic modalities in respiratory medicine.

Adoption of artificial intelligence in healthcare: survey of health system priorities, successes, and challenges.

Poon EG, Lemak CH, Rojas JC, Guptill J, Classen D

pubmed logopapersJul 1 2025
The US healthcare system faces significant challenges, including clinician burnout, operational inefficiencies, and concerns about patient safety. Artificial intelligence (AI), particularly generative AI, has the potential to address these challenges, but its adoption, effectiveness, and barriers to implementation are not well understood. To evaluate the current state of AI adoption in US healthcare systems, assess successes and barriers to implementation during the early generative AI era. This cross-sectional survey was conducted in Fall 2024, and included 67 health systems members of the Scottsdale Institute, a collaborative of US non-profit healthcare organizations. Forty-three health systems completed the survey (64% response rate). Respondents provided data on the deployment status and perceived success of 37 AI use cases across 10 categories. The primary outcomes were the extent of AI use case development, piloting, or deployment, the degree of reported success for AI use cases, and the most significant barriers to adoption. Across the 43 responding health systems, AI adoption and perceptions of success varied significantly. Ambient Notes, a generative AI tool for clinical documentation, was the only use case with 100% of respondents reporting adoption activities, and 53% reported a high degree of success with using AI for Clinical Documentation. Imaging and radiology emerged as the most widely deployed clinical AI use case, with 90% of organizations reporting at least partial deployment, although successes with diagnostic use cases were limited. Similarly, many organizations have deployed AI for clinical risk stratification such as early sepsis detection, but only 38% report high success in this area. Immature AI tools were identified a significant barrier to adoption, cited by 77% of respondents, followed by financial concerns (47%) and regulatory uncertainty (40%). Ambient Notes is rapidly advancing in US healthcare systems and demonstrating early success. Other AI use cases show varying degrees of adoption and success, constrained by barriers such as immature AI tools, financial concerns, and regulatory uncertainty. Addressing these challenges through robust evaluations, shared strategies, and governance models will be essential to ensure effective integration and adoption of AI into healthcare practice.

Practical applications of AI in body imaging.

Mervak BM, Fried JG, Neshewat J, Wasnik AP

pubmed logopapersJun 27 2025
Artificial intelligence (AI) algorithms and deep learning continue to change the landscape of radiology. New algorithms promise to enhance diagnostic accuracy, improve workflow efficiency, and automate repetitive tasks. This article provides a narrative review of the FDA-cleared AI algorithms which are commercially available in the United States as of late 2024 and targeted toward assessment of abdominopelvic organs and related diseases, evaluates potential advantages of using AI, and suggests future directions for the field.

Leadership in radiology in the era of technological advancements and artificial intelligence.

Wichtmann BD, Paech D, Pianykh OS, Huang SY, Seltzer SE, Brink J, Fennessy FM

pubmed logopapersJun 27 2025
Radiology has evolved from the pioneering days of X-ray imaging to a field rich in advanced technologies on the cusp of a transformative future driven by artificial intelligence (AI). As imaging workloads grow in volume and complexity, and economic as well as environmental pressures intensify, visionary leadership is needed to navigate the unprecedented challenges and opportunities ahead. Leveraging its strengths in automation, accuracy and objectivity, AI will profoundly impact all aspects of radiology practice-from workflow management, to imaging, diagnostics, reporting and data-driven analytics-freeing radiologists to focus on value-driven tasks that improve patient care. However, successful AI integration requires strong leadership and robust governance structures to oversee algorithm evaluation, deployment, and ongoing maintenance, steering the transition from static to continuous learning systems. The vision of a "diagnostic cockpit" that integrates multidimensional data for quantitative precision diagnoses depends on visionary leadership that fosters innovation and interdisciplinary collaboration. Through administrative automation, precision medicine, and predictive analytics, AI can enhance operational efficiency, reduce administrative burden, and optimize resource allocation, leading to substantial cost reductions. Leaders need to understand not only the technical aspects but also the complex human, administrative, and organizational challenges of AI's implementation. Establishing sound governance and organizational frameworks will be essential to ensure ethical compliance and appropriate oversight of AI algorithms. As radiology advances toward this AI-driven future, leaders must cultivate an environment where technology enhances rather than replaces human skills, upholding an unwavering commitment to human-centered care. Their vision will define radiology's pioneering role in AI-enabled healthcare transformation. KEY POINTS: Question Artificial intelligence (AI) will transform radiology, improving workflow efficiency, reducing administrative burden, and optimizing resource allocation to meet imaging workloads' increasing complexity and volume. Findings Strong leadership and governance ensure ethical deployment of AI, steering the transition from static to continuous learning systems while fostering interdisciplinary innovation and collaboration. Clinical relevance Visionary leaders must harness AI to enhance, rather than replace, the role of professionals in radiology, advancing human-centered care while pioneering healthcare transformation.
Page 4 of 1091 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.