Sort by:
Page 38 of 3523516 results

Automated 3D segmentation of rotator cuff muscle and fat from longitudinal CT for shoulder arthroplasty evaluation.

Yang M, Jun BJ, Owings T, Subhas N, Polster J, Winalski CS, Ho JC, Entezari V, Derwin KA, Ricchetti ET, Li X

pubmed logopapersAug 9 2025
To develop and validate a deep learning model for automated 3D segmentation of rotator cuff muscles on longitudinal CT scans to quantify muscle volume and fat fraction in patients undergoing total shoulder arthroplasty (TSA). The proposed segmentation models adopted DeepLabV3 + with ResNet50 as the backbone. The models were trained, validated, and tested on preoperative or minimum 2-year follow-up CT scans from 53 TSA subjects. 3D Dice similarity scores, average symmetric surface distance (ASSD), 95th percentile Hausdorff distance (HD95), and relative absolute volume difference (RAVD) were used to evaluate the model performance on hold-out test sets. The trained models were applied to a cohort of 172 patients to quantify rotator cuff muscle volumes and fat fractions across preoperative and minimum 2- and 5-year follow-ups. Compared to the ground truth, the models achieved mean Dice of 0.928 and 0.916, mean ASSD of 0.844 mm and 1.028 mm, mean HD95 of 3.071 mm and 4.173 mm, and mean RAVD of 0.025 and 0.068 on the hold-out test sets for the pre-operative and the minimum 2-year follow-up CT scans, respectively. This study developed accurate and reliable deep learning models for automated 3D segmentation of rotator cuff muscles on clinical CT scans in TSA patients. These models substantially reduce the time required for muscle volume and fat fraction analysis and provide a practical tool for investigating how rotator cuff muscle health relates to surgical outcomes. This has the potential to inform patient selection, rehabilitation planning, and surgical decision-making in TSA and RCR.

FoundBioNet: A Foundation-Based Model for IDH Genotyping of Glioma from Multi-Parametric MRI

Somayeh Farahani, Marjaneh Hejazi, Antonio Di Ieva, Sidong Liu

arxiv logopreprintAug 9 2025
Accurate, noninvasive detection of isocitrate dehydrogenase (IDH) mutation is essential for effective glioma management. Traditional methods rely on invasive tissue sampling, which may fail to capture a tumor's spatial heterogeneity. While deep learning models have shown promise in molecular profiling, their performance is often limited by scarce annotated data. In contrast, foundation deep learning models offer a more generalizable approach for glioma imaging biomarkers. We propose a Foundation-based Biomarker Network (FoundBioNet) that utilizes a SWIN-UNETR-based architecture to noninvasively predict IDH mutation status from multi-parametric MRI. Two key modules are incorporated: Tumor-Aware Feature Encoding (TAFE) for extracting multi-scale, tumor-focused features, and Cross-Modality Differential (CMD) for highlighting subtle T2-FLAIR mismatch signals associated with IDH mutation. The model was trained and validated on a diverse, multi-center cohort of 1705 glioma patients from six public datasets. Our model achieved AUCs of 90.58%, 88.08%, 65.41%, and 80.31% on independent test sets from EGD, TCGA, Ivy GAP, RHUH, and UPenn, consistently outperforming baseline approaches (p <= 0.05). Ablation studies confirmed that both the TAFE and CMD modules are essential for improving predictive accuracy. By integrating large-scale pretraining and task-specific fine-tuning, FoundBioNet enables generalizable glioma characterization. This approach enhances diagnostic accuracy and interpretability, with the potential to enable more personalized patient care.

LWT-ARTERY-LABEL: A Lightweight Framework for Automated Coronary Artery Identification

Shisheng Zhang, Ramtin Gharleghi, Sonit Singh, Daniel Moses, Dona Adikari, Arcot Sowmya, Susann Beier

arxiv logopreprintAug 9 2025
Coronary artery disease (CAD) remains the leading cause of death globally, with computed tomography coronary angiography (CTCA) serving as a key diagnostic tool. However, coronary arterial analysis using CTCA, such as identifying artery-specific features from computational modelling, is labour-intensive and time-consuming. Automated anatomical labelling of coronary arteries offers a potential solution, yet the inherent anatomical variability of coronary trees presents a significant challenge. Traditional knowledge-based labelling methods fall short in leveraging data-driven insights, while recent deep-learning approaches often demand substantial computational resources and overlook critical clinical knowledge. To address these limitations, we propose a lightweight method that integrates anatomical knowledge with rule-based topology constraints for effective coronary artery labelling. Our approach achieves state-of-the-art performance on benchmark datasets, providing a promising alternative for automated coronary artery labelling.

Collaborative and privacy-preserving cross-vendor united diagnostic imaging via server-rotating federated machine learning.

Wang H, Zhang X, Ren X, Zhang Z, Yang S, Lian C, Ma J, Zeng D

pubmed logopapersAug 9 2025
Federated Learning (FL) is a distributed framework that enables collaborative training of a server model across medical data vendors while preserving data privacy. However, conventional FL faces two key challenges: substantial data heterogeneity among vendors and limited flexibility from a fixed server, leading to suboptimal performance in diagnostic-imaging tasks. To address these, we propose a server-rotating federated learning method (SRFLM). Unlike traditional FL, SRFLM designates one vendor as a provisional server for federated fine-tuning, with others acting as clients. It uses a rotational server-communication mechanism and a dynamic server-election strategy, allowing each vendor to sequentially assume the server role over time. Additionally, the communication protocol of SRFLM provides strong privacy guarantees using differential privacy. We extensively evaluate SRFLM across multiple cross-vendor diagnostic imaging tasks. We envision SRFLM as paving the way to facilitate collaborative model training across medical data vendors, thereby achieving the goal of cross-vendor united diagnostic imaging.

Supporting intraoperative margin assessment using deep learning for automatic tumour segmentation in breast lumpectomy micro-PET-CT.

Maris L, Göker M, De Man K, Van den Broeck B, Van Hoecke S, Van de Vijver K, Vanhove C, Keereman V

pubmed logopapersAug 9 2025
Complete tumour removal is vital in curative breast cancer (BCa) surgery to prevent recurrence. Recently, [<sup>18</sup>F]FDG micro-PET-CT of lumpectomy specimens has shown promise for intraoperative margin assessment (IMA). To aid interpretation, we trained a 2D Residual U-Net to delineate invasive carcinoma of no special type in micro-PET-CT lumpectomy images. We collected 53 BCa lamella images from 19 patients with true histopathology-defined tumour segmentations. Group five-fold cross-validation yielded a dice similarity coefficient of 0.71 ± 0.20 for segmentation. Afterwards, an ensemble model was generated to segment tumours and predict margin status. Comparing predicted and true histopathological margin status in a separate set of 31 micro-PET-CT lumpectomy images of 31 patients achieved an F1 score of 84%, closely matching the mean performance of seven physicians who manually interpreted the same images. This model represents an important step towards a decision-support system that enhances micro-PET-CT-based IMA in BCa, facilitating its clinical adoption.

Spatio-Temporal Conditional Diffusion Models for Forecasting Future Multiple Sclerosis Lesion Masks Conditioned on Treatments

Gian Mario Favero, Ge Ya Luo, Nima Fathi, Justin Szeto, Douglas L. Arnold, Brennan Nichyporuk, Chris Pal, Tal Arbel

arxiv logopreprintAug 9 2025
Image-based personalized medicine has the potential to transform healthcare, particularly for diseases that exhibit heterogeneous progression such as Multiple Sclerosis (MS). In this work, we introduce the first treatment-aware spatio-temporal diffusion model that is able to generate future masks demonstrating lesion evolution in MS. Our voxel-space approach incorporates multi-modal patient data, including MRI and treatment information, to forecast new and enlarging T2 (NET2) lesion masks at a future time point. Extensive experiments on a multi-centre dataset of 2131 patient 3D MRIs from randomized clinical trials for relapsing-remitting MS demonstrate that our generative model is able to accurately predict NET2 lesion masks for patients across six different treatments. Moreover, we demonstrate our model has the potential for real-world clinical applications through downstream tasks such as future lesion count and location estimation, binary lesion activity classification, and generating counterfactual future NET2 masks for several treatments with different efficacies. This work highlights the potential of causal, image-based generative models as powerful tools for advancing data-driven prognostics in MS.

Fusion-Based Brain Tumor Classification Using Deep Learning and Explainable AI, and Rule-Based Reasoning

Melika Filvantorkaman, Mohsen Piri, Maral Filvan Torkaman, Ashkan Zabihi, Hamidreza Moradi

arxiv logopreprintAug 9 2025
Accurate and interpretable classification of brain tumors from magnetic resonance imaging (MRI) is critical for effective diagnosis and treatment planning. This study presents an ensemble-based deep learning framework that combines MobileNetV2 and DenseNet121 convolutional neural networks (CNNs) using a soft voting strategy to classify three common brain tumor types: glioma, meningioma, and pituitary adenoma. The models were trained and evaluated on the Figshare dataset using a stratified 5-fold cross-validation protocol. To enhance transparency and clinical trust, the framework integrates an Explainable AI (XAI) module employing Grad-CAM++ for class-specific saliency visualization, alongside a symbolic Clinical Decision Rule Overlay (CDRO) that maps predictions to established radiological heuristics. The ensemble classifier achieved superior performance compared to individual CNNs, with an accuracy of 91.7%, precision of 91.9%, recall of 91.7%, and F1-score of 91.6%. Grad-CAM++ visualizations revealed strong spatial alignment between model attention and expert-annotated tumor regions, supported by Dice coefficients up to 0.88 and IoU scores up to 0.78. Clinical rule activation further validated model predictions in cases with distinct morphological features. A human-centered interpretability assessment involving five board-certified radiologists yielded high Likert-scale scores for both explanation usefulness (mean = 4.4) and heatmap-region correspondence (mean = 4.0), reinforcing the framework's clinical relevance. Overall, the proposed approach offers a robust, interpretable, and generalizable solution for automated brain tumor classification, advancing the integration of deep learning into clinical neurodiagnostics.

BrainATCL: Adaptive Temporal Brain Connectivity Learning for Functional Link Prediction and Age Estimation

Yiran Huang, Amirhossein Nouranizadeh, Christine Ahrends, Mengjia Xu

arxiv logopreprintAug 9 2025
Functional Magnetic Resonance Imaging (fMRI) is an imaging technique widely used to study human brain activity. fMRI signals in areas across the brain transiently synchronise and desynchronise their activity in a highly structured manner, even when an individual is at rest. These functional connectivity dynamics may be related to behaviour and neuropsychiatric disease. To model these dynamics, temporal brain connectivity representations are essential, as they reflect evolving interactions between brain regions and provide insight into transient neural states and network reconfigurations. However, conventional graph neural networks (GNNs) often struggle to capture long-range temporal dependencies in dynamic fMRI data. To address this challenge, we propose BrainATCL, an unsupervised, nonparametric framework for adaptive temporal brain connectivity learning, enabling functional link prediction and age estimation. Our method dynamically adjusts the lookback window for each snapshot based on the rate of newly added edges. Graph sequences are subsequently encoded using a GINE-Mamba2 backbone to learn spatial-temporal representations of dynamic functional connectivity in resting-state fMRI data of 1,000 participants from the Human Connectome Project. To further improve spatial modeling, we incorporate brain structure and function-informed edge attributes, i.e., the left/right hemispheric identity and subnetwork membership of brain regions, enabling the model to capture biologically meaningful topological patterns. We evaluate our BrainATCL on two tasks: functional link prediction and age estimation. The experimental results demonstrate superior performance and strong generalization, including in cross-session prediction scenarios.

Self-supervised disc and cup segmentation via non-local deformable convolution and adaptive transformer.

Zhao W, Wang Y

pubmed logopapersAug 9 2025
Optic disc and cup segmentation is a crucial subfield of computer vision, playing a pivotal role in automated pathological image analysis. It enables precise, efficient, and automated diagnosis of ocular conditions, significantly aiding clinicians in real-world medical applications. However, due to the scarcity of medical segmentation data and the insufficient integration of global contextual information, the segmentation accuracy remains suboptimal. This issue becomes particularly pronounced in optic disc and cup cases with complex anatomical structures and ambiguous boundaries.In order to address these limitations, this paper introduces a self-supervised training strategy integrated with a newly designed network architecture to improve segmentation accuracy.Specifically,we initially propose a non-local dual deformable convolutional block,which aims to capture the irregular image patterns(i.e. boundary).Secondly,we modify the traditional vision transformer and design an adaptive K-Nearest Neighbors(KNN) transformation block to extract the global semantic context from images. Finally,an initialization strategy based on self-supervised training is proposed to reduce the burden on the network on labeled data.Comprehensive experimental evaluations demonstrate the effectiveness of our proposed method, which outperforms previous networks and achieves state-of-the-art performance,with IOU scores of 0.9577 for the optic disc and 0.8399 for the optic cup on the REFUGE dataset.

Stenosis degree and plaque burden differ between the major epicardial coronary arteries supplying ischemic territories.

Kero T, Knuuti J, Bär S, Bax JJ, Saraste A, Maaniitty T

pubmed logopapersAug 9 2025
It is unclear whether coronary artery stenosis, plaque burden, and composition differ between major epicardial arteries supplying ischemic myocardial territories. We studied 837 symptomatic patients undergoing coronary computed tomography angiography (CTA) and <sup>15</sup>O-water PET myocardial perfusion imaging for suspected obstructive coronary artery disease. Coronary CTA was analyzed using Artificial Intelligence-Guided Quantitative Computed Tomography (AI-QCT) to assess stenosis and atherosclerotic plaque characteristics. Myocardial ischemia was defined by regional PET perfusion in the left anterior descending (LAD), left circumflex (LCX), and right coronary artery (RCA) territories. Among arteries supplying ischemic territories, the LAD exhibited significantly higher stenosis and both absolute and normalized plaque volumes compared to LCX and RCA (p<0.001 for all). Multivariable logistic regression showed diameter stenosis (p=0.001-0.015), percent atheroma volume (PAV; p<0.001), and percent non-calcified plaque volume (p=0.001-0.017) were associated with ischemia across all three arteries. Percent calcified plaque volume was associated with ischemia only in the RCA (p=0.001). The degree of stenosis and atherosclerotic burden are significantly higher in LAD as compared to LCX and RCA, both in epicardial coronary arteries supplying non-ischemic or ischemic myocardial territories. In all the three main coronary arteries both luminal narrowing and plaque burden are independent predictors of ischemia, where the plaque burden is mainly driven by non-calcified plaque. However, many vessels supplying ischemic territories have relatively low stenosis degree and plaque burden, especially in the LCx and RCA, limiting the ability of diameter stenosis and PAV to predict myocardial ischemia.
Page 38 of 3523516 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.