Sort by:
Page 37 of 1331328 results

Genetic architecture of bone marrow fat fraction implies its involvement in osteoporosis risk.

Wu Z, Yang Y, Ning C, Li J, Cai Y, Li Y, Cao Z, Tian S, Peng J, Ma Q, He C, Xia S, Chen J, Miao X, Li Z, Zhu Y, Chu Q, Tian J

pubmed logopapersAug 12 2025
Bone marrow adipose tissue, as a distinct adipose subtype, has been implicated in the pathophysiology of skeletal, metabolic, and hematopoietic disorders. To identify its underlying genetic factors, we utilized a deep learning algorithm capable of quantifying bone marrow fat fraction (BMFF) in the vertebrae and proximal femur using magnetic resonance imaging data of over 38,000 UK Biobank participants. Genome-wide association analyses uncovered 373 significant BMFF-associated variants (P-value < 5 × 10<sup>-9</sup>), with enrichment in bone remodeling, metabolism, and hematopoiesis pathway. Furthermore, genetic correlation highlighted a significant association between BMFF and skeletal disease. In about 300,000 individuals, polygenic risk scores derived from three proximal femur BMFF were significantly associated with increased osteoporosis risk. Notably, Mendelian randomization analyses revealed a causal link between proximal femur BMFF and osteoporosis. Here, we show critical insights into the genetic determinants of BMFF and offer perspectives on the biological mechanisms driving osteoporosis development.

MRI-derived quantification of hepatic vessel-to-volume ratios in chronic liver disease using a deep learning approach.

Herold A, Sobotka D, Beer L, Bastati N, Poetter-Lang S, Weber M, Reiberger T, Mandorfer M, Semmler G, Simbrunner B, Wichtmann BD, Ba-Ssalamah SA, Trauner M, Ba-Ssalamah A, Langs G

pubmed logopapersAug 12 2025
We aimed to quantify hepatic vessel volumes across chronic liver disease stages and healthy controls using deep learning-based magnetic resonance imaging (MRI) analysis, and assess correlations with biomarkers for liver (dys)function and fibrosis/portal hypertension. We assessed retrospectively healthy controls, non-advanced and advanced chronic liver disease (ACLD) patients using a 3D U-Net model for hepatic vessel segmentation on portal venous phase gadoxetic acid-enhanced 3-T MRI. Total (TVVR), hepatic (HVVR), and intrahepatic portal vein-to-volume ratios (PVVR) were compared between groups and correlated with: albumin-bilirubin (ALBI) and "model for end-stage liver disease-sodium" (MELD-Na) score) and fibrosis/portal hypertension (Fibrosis-4 (FIB-4) Score, liver stiffness measurement (LSM), hepatic venous pressure gradient (HVPG), platelet count (PLT), and spleen volume. We included 197 subjects, aged 54.9 ± 13.8 years (mean ± standard deviation), 111 males (56.3%): 35 healthy controls, 44 non-ACLD, and 118 ACLD patients. TVVR and HVVR were highest in controls (3.9; 2.1), intermediate in non-ACLD (2.8; 1.7), and lowest in ACLD patients (2.3; 1.0) (p ≤ 0.001). PVVR was reduced in both non-ACLD and ACLD patients (both 1.2) compared to controls (1.7) (p ≤ 0.001), but showed no difference between CLD groups (p = 0.999). HVVR significantly correlated indirectly with FIB-4, ALBI, MELD-Na, LSM, and spleen volume (ρ ranging from -0.27 to -0.40), and directly with PLT (ρ = 0.36). TVVR and PVVR showed similar but weaker correlations. Deep learning-based hepatic vessel volumetry demonstrated differences between healthy liver and chronic liver disease stages and shows correlations with established markers of disease severity. Hepatic vessel volumetry demonstrates differences between healthy liver and chronic liver disease stages, potentially serving as a non-invasive imaging biomarker. Deep learning-based vessel analysis can provide automated quantification of hepatic vascular changes across healthy liver and chronic liver disease stages. Automated quantification of hepatic vasculature shows significantly reduced hepatic vascular volume in advanced chronic liver disease compared to non-advanced disease and healthy liver. Decreased hepatic vascular volume, particularly in the hepatic venous system, correlates with markers of liver dysfunction, fibrosis, and portal hypertension.

Spatial Prior-Guided Dual-Path Network for Thyroid Nodule Segmentation.

Pang C, Miao H, Zhang R, Liu Q, Lyu L

pubmed logopapersAug 12 2025
Accurate segmentation of thyroid nodules in ultrasound images is critical for clinical diagnosis but remains challenging due to low contrast and complex anatomical structures. Existing deep learning methods often rely solely on local nodule features, lacking anatomical prior knowledge of the thyroid region, which can result in misclassification of non-thyroid tissues, especially in low-quality scans. To address these issues, we propose a Spatial Prior-Guided Dual-Path Network that integrates a prior-aware encoder to model thyroid anatomical structures and a low-cost heterogeneous encoder to preserve fine-grained multi-scale features, enhancing both spatial detail and contextual awareness. To capture the diverse and irregular appearances of nodules, we design a CrossBlock module, which combines an efficient cross-attention mechanism with mixed-scale convolutional operations to enable global context modeling and local feature extraction. The network further employs a dual-decoder architecture, where one decoder learns thyroid region priors and the other focuses on accurate nodule segmentation. Gland-specific features are hierarchically refined and injected into the nodule decoder to enhance boundary delineation through anatomical guidance. Extensive experiments on the TN3K and MTNS datasets demonstrate that our method consistently outperforms state-of-the-art approaches, particularly in boundary precision and localization accuracy, offering practical value for preoperative planning and clinical decision-making.

The association of symptoms, pulmonary function test and computed tomography in interstitial lung disease at the onset of connective tissue disease: an observational study with artificial intelligence analysis of high-resolution computed tomography.

Hoffmann T, Teichgräber U, Brüheim LB, Lassen-Schmidt B, Renz D, Weise T, Krämer M, Oelzner P, Böttcher J, Güttler F, Wolf G, Pfeil A

pubmed logopapersAug 12 2025
Interstitial lung disease (ILD) is a common and serious organ manifestation in patients with connective tissue disease (CTD), but it is uncertain whether there is a difference in ILD between symptomatic and asymptomatic patients. Therefore, we conducted a study to evaluate differences in the extent of ILD based on radiological findings between symptomatic/asymptomatic patients, using an artificial intelligence (AI)-based quantification of pulmonary high-resolution computed tomography (AIpqHRCT). Within the study, 67 cross-sectional HRCT datasets and clinical data (including pulmonary function test) of consecutively patients (mean age: 57.1 ± 14.7 years, woman n = 45; 67.2%) with both, initial diagnosis of CTD, with systemic sclerosis being the most frequent (n = 21, 31.3%), and ILD (all without immunosuppressive therapy), were analysed using AIqpHRCT. 25.4% (n = 17) of the patients with ILD at initial diagnosis of CTD had no pulmonary symptoms. Regarding the baseline characteristics (age, gender, disease), there were no significant difference between the symptomatic and asymptomatic group. The pulmonary function test (PFT) revealed the following mean values (%predicted) in the symptomatic and asymptomatic group, respectively: Forced vital capacity (FVC) 69.4 ± 17.4% versus 86.1 ± 15.8% (p = 0.001), and diffusing capacity of the lung for carbon monoxide (DLCO) 49.7 ± 17.9% versus 60.0 ± 15.8% (p = 0.043). AIqpHRCT data showed a significant higher amount of high attenuated volume (HAV) (14.8 ± 11.0% versus 8.9 ± 3.9%; p = 0.021) and reticulations (5.4 ± 8.7% versus 1.4 ± 1.5%; p = 0.035) in symptomatic patients. A quarter of patients with ILD at the time of initial CTD diagnosis had no pulmonary symptoms, showing DLCO were reduced in both groups. Also, AIqpHRCT demonstrated clinically relevant ILD in asymptomatic patients. These results underline the importance of an early risk adapted screening for ILD also in asymptomatic CTD patients, as ILD is associated with increased mortality.

Unified and Semantically Grounded Domain Adaptation for Medical Image Segmentation

Xin Wang, Yin Guo, Jiamin Xia, Kaiyu Zhang, Niranjan Balu, Mahmud Mossa-Basha, Linda Shapiro, Chun Yuan

arxiv logopreprintAug 12 2025
Most prior unsupervised domain adaptation approaches for medical image segmentation are narrowly tailored to either the source-accessible setting, where adaptation is guided by source-target alignment, or the source-free setting, which typically resorts to implicit supervision mechanisms such as pseudo-labeling and model distillation. This substantial divergence in methodological designs between the two settings reveals an inherent flaw: the lack of an explicit, structured construction of anatomical knowledge that naturally generalizes across domains and settings. To bridge this longstanding divide, we introduce a unified, semantically grounded framework that supports both source-accessible and source-free adaptation. Fundamentally distinct from all prior works, our framework's adaptability emerges naturally as a direct consequence of the model architecture, without the need for any handcrafted adaptation strategies. Specifically, our model learns a domain-agnostic probabilistic manifold as a global space of anatomical regularities, mirroring how humans establish visual understanding. Thus, the structural content in each image can be interpreted as a canonical anatomy retrieved from the manifold and a spatial transformation capturing individual-specific geometry. This disentangled, interpretable formulation enables semantically meaningful prediction with intrinsic adaptability. Extensive experiments on challenging cardiac and abdominal datasets show that our framework achieves state-of-the-art results in both settings, with source-free performance closely approaching its source-accessible counterpart, a level of consistency rarely observed in prior works. Beyond quantitative improvement, we demonstrate strong interpretability of the proposed framework via manifold traversal for smooth shape manipulation.

Fully Automatic Volume Segmentation Using Deep Learning Approaches to Assess the Thoracic Aorta, Visceral Abdominal Aorta, and Visceral Vasculature.

Pouncey AL, Charles E, Bicknell C, Bérard X, Ducasse E, Caradu C

pubmed logopapersAug 12 2025
Computed tomography angiography (CTA) imaging is essential to evaluate and analyse complex abdominal and thoraco-abdominal aortic aneurysms. However, CTA analyses are labour intensive, time consuming, and prone to interphysician variability. Fully automatic volume segmentation (FAVS) using artificial intelligence with deep learning has been validated for infrarenal aorta imaging but requires further testing for thoracic and visceral aorta segmentation. This study assessed FAVS accuracy against physician controlled manual segmentation (PCMS) in the descending thoracic aorta, visceral abdominal aorta, and visceral vasculature. This was a retrospective, multicentre, observational cohort study. Fifty pre-operative CTAs of patients with abdominal aortic aneurysm were randomly selected. Comparisons between FAVS and PCMS and assessment of inter- and intra-observer reliability of PCMS were performed. Volumetric segmentation performance was evaluated using sensitivity, specificity, Dice similarity coefficient (DSC), and Jaccard index (JI). Visceral vessel identification was compared by analysing branchpoint coordinates. Bland-Altman limits of agreement (BA-LoA) were calculated for proximal visceral diameters (excluding duplicate renals). FAVS demonstrated performance comparable with PCMS for volumetric segmentation, with a median DSC of 0.93 (interquartile range [IQR] 0.03), JI of 0.87 (IQR 0.05), sensitivity of 0.99 (IQR 0.01), and specificity of 1.00 (IQR 0.00). These metrics are similar to interphysician comparisons: median DSC 0.93 (IQR 0.07), JI 0.87 (IQR 0.12), sensitivity 0.90 (IQR 0.08), and specificity 1.00 (IQR 0.00). FAVS correctly identified 99.5% (183/184) of visceral vessels. Branchpoint coordinates for FAVS and PCMS were within the limits of CTA spatial resolution (Δx -0.33 [IQR 2.82], Δy 0.61 [IQR 4.85], Δz 2.10 [IQR 4.69] mm). BA-LoA for proximal visceral diameter measurements showed reasonable agreement: FAVS vs. PCMS mean difference -0.11 ± 5.23 mm compared with interphysician variability of 0.03 ± 5.27 mm. FAVS provides accurate, efficient segmentation of the thoracic and visceral aorta, delivering performance comparable with manual segmentation by expert physicians. This technology may enhance clinical workflows for monitoring and planning treatments for complex abdominal and thoraco-abdominal aortic aneurysms.

Artificial Intelligence quantified prostate specific membrane antigen imaging in metastatic castrate-resistant prostate cancer patients treated with Lutetium-177-PSMA-617

Yu, S. L., Wang, X., Wen, S., Holler, S., Bodkin, M., Kolodney, J., Najeeb, S., Hogan, T.

medrxiv logopreprintAug 12 2025
PURPOSEThe VISION study1 found that Lutetium-177 (177Lu)-PSMA-617 ("Lu-177") improved overall survival in metastatic castrate resistant prostate cancer (mCRPC). We assessed whether artificial intelligence enhanced PSMA imaging in mCRPC patients starting Lu-177 could identify those with better treatment outcomes. PATIENTS AND METHODSWe conducted a single site, tertiary center, retrospective cohort study in 51 consecutive mCRPC patients treated 2022-2024 with Lu-177. These patients had received most standard treatments, with disease progression. Planned treatment was Lu-177 every 6 weeks while continuing androgen deprivation therapy. Before starting treatment, PSMA images were analyzed for SUVmax and quantified tumor volume using artificial intelligence software (aPROMISE, Exinni Inc.). RESULTSFifty-one mCRPC patients were treated with Lu-177; 33 (65%) received 4 or more treatment cycles and these 33 had Kaplan-Meier median overall survival (OS) of 19.3 months and 23 (70%) surviving at 24 month data analysis. At first cycle Lu-177, these 33 had significantly more favorable levels of serum albumin, alkaline phosphatase, calcium, glucose, prostate specific antigen (PSA), ECOG performance status, and F18 PSMA imaging SUV-maximum values - reflecting PSMA "target expression". In a "protocol-eligibility" analysis, 30 of the 51 patients (59%) were considered "protocol-eligible" and 21 (41%) "protocol-ineligible" based on initial clinical parameters, as defined in Methods. "Protocol-eligible" patients had OS of 14.6 mo and 63% survival at 24 months. AI-enhanced F18 PSMA quantified imaging found "protocol-eligible" tumor volume in mL to be only 39% of the volume in "ineligible" patients. CONCLUSIONIn this cohort of mCRPC patients receiving Lu-177, pre-treatment AI-assisted F18 PSMA imaging finding higher PSMA SUV / lower tumor volume associated with the patients ability to have four or more treatment cycles, protocol eligibility, and better overall survival. KEY POINTSO_ST_ABSQuestionC_ST_ABSIn mCRPC patients initiating Lu-177 therapy, can AI-assisted F18 PSMA imaging identify patients who have better treatment outomes? Findings33 (65%) of a 51 consecutive patient mCRPC cohort were able to receive 4 or more cycles Lu-177. These patients had significantly more favorable serum albumin, alkaline phosphatase, calcium, glucose, PSA, performance status, and higher AI-PSMA scan SUV-maximum values, with a trend toward lower PSMA tumor volumes in mL. They had Kaplan-Meier median OS of 19.3 months and 70% survived at 24 months. AI-enhanced PSMA tumor volumes (mL) in "protocol eligible" patients were significantly lower - only 40% - than tumor volumes of "protocol ineligible" patients. MeaningIn this cohort of mCRPC patients receiving Lu-177, pre-treatment AI-assisted F18 PSMA imaging finding higher PSMA SUV / lower tumor volume associated with the patients ability to have four or more treatment cycles, protocol eligibility, and better overall survival.

Unified and Semantically Grounded Domain Adaptation for Medical Image Segmentation

Xin Wang, Yin Guo, Jiamin Xia, Kaiyu Zhang, Niranjan Balu, Mahmud Mossa-Basha, Linda Shapiro, Chun Yuan

arxiv logopreprintAug 12 2025
Most prior unsupervised domain adaptation approaches for medical image segmentation are narrowly tailored to either the source-accessible setting, where adaptation is guided by source-target alignment, or the source-free setting, which typically resorts to implicit supervision mechanisms such as pseudo-labeling and model distillation. This substantial divergence in methodological designs between the two settings reveals an inherent flaw: the lack of an explicit, structured construction of anatomical knowledge that naturally generalizes across domains and settings. To bridge this longstanding divide, we introduce a unified, semantically grounded framework that supports both source-accessible and source-free adaptation. Fundamentally distinct from all prior works, our framework's adaptability emerges naturally as a direct consequence of the model architecture, without the need for any handcrafted adaptation strategies. Specifically, our model learns a domain-agnostic probabilistic manifold as a global space of anatomical regularities, mirroring how humans establish visual understanding. Thus, the structural content in each image can be interpreted as a canonical anatomy retrieved from the manifold and a spatial transformation capturing individual-specific geometry. This disentangled, interpretable formulation enables semantically meaningful prediction with intrinsic adaptability. Extensive experiments on challenging cardiac and abdominal datasets show that our framework achieves state-of-the-art results in both settings, with source-free performance closely approaching its source-accessible counterpart, a level of consistency rarely observed in prior works. Beyond quantitative improvement, we demonstrate strong interpretability of the proposed framework via manifold traversal for smooth shape manipulation.

Ratio of visceral-to-subcutaneous fat area improves long-term mortality prediction over either measure alone: automated CT-based AI measures with longitudinal follow-up in a large adult cohort.

Liu D, Kuchnia AJ, Blake GM, Lee MH, Garrett JW, Pickhardt PJ

pubmed logopapersAug 11 2025
Fully automated AI-based algorithms can quantify adipose tissue on abdominal CT images. The aim of this study was to investigate the clinical value of these biomarkers by determining the association between adipose tissue measures and all-cause mortality. This retrospective study included 151,141 patients who underwent abdominal CT for any reason between 2000 and 2021. A validated AI-based algorithm quantified subcutaneous (SAT) and visceral (VAT) adipose tissue cross-sectional area. A visceral-to-subcutaneous adipose tissue area ratio (VSR) was calculated. Clinical data (age at the time of CT, sex, date of death, date of last contact) was obtained from a database search of the electronic health record. Hazard ratios (HR) and Kaplan-Meier curves assessed the relationship between adipose tissue measures and mortality. The endpoint of interest was all-cause mortality, with additional subgroup analysis including age and gender. 138,169 patients were included in the final analysis. Higher VSR was associated with increased mortality; this association was strongest in younger women (highest compared to lowest risk quartile HR 3.32 in 18-39y). Lower SAT was associated with increased mortality regardless of sex or age group (HR up to 1.63 in 18-39y). Higher VAT was associated with increased mortality in younger age groups, with the trend weakening and reversing with age; this association was stronger in women. AI-based CT measures of SAT, VAT, and VSR are predictive of mortality, with VSR being the highest performing fat area biomarker overall. These metrics tended to perform better for women and younger patients. Incorporating AI tools can augment patient assessment and management, improving outcome.

Decoding fetal motion in 4D ultrasound with DeepLabCut.

Inubashiri E, Kaishi Y, Miyake T, Yamaguchi R, Hamaguchi T, Inubashiri M, Ota H, Watanabe Y, Deguchi K, Kuroki K, Maeda N

pubmed logopapersAug 11 2025
This study aimed to objectively and quantitatively analyze fetal motor behavior using DeepLabCut (DLC), a markerless posture estimation tool based on deep learning, applied to four-dimensional ultrasound (4DUS) data collected during the second trimester. We propose a novel clinical method for precise assessment of fetal neurodevelopment. Fifty 4DUS video recordings of normal singleton fetuses aged 12 to 22 gestational weeks were analyzed. Eight fetal joints were manually labeled in 2% of each video to train a customized DLC model. The model's accuracy was evaluated using likelihood scores. Intra- and inter-rater reliability of manual labeling were assessed using intraclass correlation coefficients (ICC). Angular velocity time series derived from joint coordinates were analyzed to quantify fetal movement patterns and developmental coordination. Manual labeling demonstrated excellent reproducibility (inter-rater ICC = 0.990, intra-rater ICC = 0.961). The trained DLC model achieved a mean likelihood score of 0.960, confirming high tracking accuracy. Kinematic analysis revealed developmental trends: localized rapid limb movements were common at 12-13 weeks; movements became more coordinated and systemic by 18-20 weeks, reflecting advancing neuromuscular maturation. Although a modest increase in tracking accuracy was observed with gestational age, this trend did not reach statistical significance (p < 0.001). DLC enables precise quantitative analysis of fetal motor behavior from 4DUS recordings. This AI-driven approach offers a promising, noninvasive alternative to conventional qualitative assessments, providing detailed insights into early fetal neurodevelopmental trajectories and potential early screening for neurodevelopmental disorders.
Page 37 of 1331328 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.