Sort by:
Page 34 of 72720 results

Role of Large Language Models for Suggesting Nerve Involvement in Upper Limbs MRI Reports with Muscle Denervation Signs.

Martín-Noguerol T, López-Úbeda P, Luna A, Gómez-Río M, Górriz JM

pubmed logopapersJun 5 2025
Determining the involvement of specific peripheral nerves (PNs) in the upper limb associated with signs of muscle denervation can be challenging. This study aims to develop, compare, and validate various large language models (LLMs) to automatically identify and establish potential relationships between denervated muscles and their corresponding PNs. We collected 300 retrospective MRI reports in Spanish from upper limb examinations conducted between 2018 and 2024 that showed signs of muscle denervation. An expert radiologist manually annotated these reports based on the affected peripheral nerves (median, ulnar, radial, axillary, and suprascapular). BERT, DistilBERT, mBART, RoBERTa, and Medical-ELECTRA models were fine-tuned and evaluated on the reports. Additionally, an automatic voting system was implemented to consolidate predictions through majority voting. The voting system achieved the highest F1 scores for the median, ulnar, and radial nerves, with scores of 0.88, 1.00, and 0.90, respectively. Medical-ELECTRA also performed well, achieving F1 scores above 0.82 for the axillary and suprascapular nerves. In contrast, mBART demonstrated lower performance, particularly with an F1 score of 0.38 for the median nerve. Our voting system generally outperforms the individually tested LLMs in determining the specific PN likely associated with muscle denervation patterns detected in upper limb MRI reports. This system can thereby assist radiologists by suggesting the implicated PN when generating their radiology reports.

DWI and Clinical Characteristics Correlations in Acute Ischemic Stroke After Thrombolysis

Li, J., Huang, C., Liu, Y., Li, Y., Zhang, J., Xiao, M., yan, Z., zhao, H., Zeng, X., Mu, J.

medrxiv logopreprintJun 5 2025
ObjectiveMagnetic Resonance Diffusion-Weighted Imaging (DWI) is a crucial tool for diagnosing acute ischemic stroke, yet some patients present as DWI-negative. This study aims to analyze the imaging differences and associated clinical characteristics in acute ischemic stroke patients receiving intravenous thrombolysis, in order to enhance understanding of DWI-negative strokes. MethodsRetrospective collection of clinical data from acute ischemic stroke patients receiving intravenous thrombolysis at the Stroke Center of the First Affiliated Hospital of Chongqing Medical University from January 2017 to June 2023, categorized into DWI-positive and negative groups. Descriptive statistics, univariate analysis, binary logistic regression, and machine learning model were utilized to assess the predictive value of clinical features. Additionally, telephone follow-up was conducted for DWI-negative patients to record medication compliance, stroke recurrence, and mortality, with Fine-Gray competing risk model used to analyze recurrent risk factors. ResultsThe incidence rate of DWI-negative ischemic stroke is 22.74%. Factors positively associated with DWI-positive cases include onset to needle time (ONT), onset to first MRI time (OMT), NIHSS score at 1 week of hospitalization (NIHSS-1w), hyperlipidemia (HLP), and atrial fibrillation (AF) (p<0.05, OR>1). Conversely, recurrent ischemic stroke (RIS) and platelet count (PLT) are negatively correlated with DWI-positive cases (p<0.05, OR<1). Trial of Org 10172 in Acute Stroke Treatment (TOAST) classification significantly influences DWI presentation (p=0.01), but the specific impact of etiological subtypes remains unclear. Machine learning models suggest that the features with the highest predictive value, in descending order, are AF, HLP, OMT, ONT, NIHSS difference within 24 hours post-thrombolysis(NIHSS-d(0-24h)PT), and RIS. ConclusionsNIHSS-1w, OMT, ONT, HLP, and AF can predict DWI-positive findings, while platelet count and RIS are associated with DWI-negative cases. AF and HLP demonstrate the highest predictive value. DWI-negative patients have a higher risk of stroke recurrence than mortality in the short term, with a potential correlation between TOAST classification and recurrence risk.

A ViTUNeT-based model using YOLOv8 for efficient LVNC diagnosis and automatic cleaning of dataset.

de Haro S, Bernabé G, García JM, González-Férez P

pubmed logopapersJun 4 2025
Left ventricular non-compaction is a cardiac condition marked by excessive trabeculae in the left ventricle's inner wall. Although various methods exist to measure these structures, the medical community still lacks consensus on the best approach. Previously, we developed DL-LVTQ, a tool based on a UNet neural network, to quantify trabeculae in this region. In this study, we expand the dataset to include new patients with Titin cardiomyopathy and healthy individuals with fewer trabeculae, requiring retraining of our models to enhance predictions. We also propose ViTUNeT, a neural network architecture combining U-Net and Vision Transformers to segment the left ventricle more accurately. Additionally, we train a YOLOv8 model to detect the ventricle and integrate it with ViTUNeT model to focus on the region of interest. Results from ViTUNet and YOLOv8 are similar to DL-LVTQ, suggesting dataset quality limits further accuracy improvements. To test this, we analyze MRI images and develop a method using two YOLOv8 models to identify and remove problematic images, leading to better results. Combining YOLOv8 with deep learning networks offers a promising approach for improving cardiac image analysis and segmentation.

A review on learning-based algorithms for tractography and human brain white matter tracts recognition.

Barati Shoorche A, Farnia P, Makkiabadi B, Leemans A

pubmed logopapersJun 4 2025
Human brain fiber tractography using diffusion magnetic resonance imaging is a crucial stage in mapping brain white matter structures, pre-surgical planning, and extracting connectivity patterns. Accurate and reliable tractography, by providing detailed geometric information about the position of neural pathways, minimizes the risk of damage during neurosurgical procedures. Both tractography itself and its post-processing steps such as bundle segmentation are usually used in these contexts. Many approaches have been put forward in the past decades and recently, multiple data-driven tractography algorithms and automatic segmentation pipelines have been proposed to address the limitations of traditional methods. Several of these recent methods are based on learning algorithms that have demonstrated promising results. In this study, in addition to introducing diffusion MRI datasets, we review learning-based algorithms such as conventional machine learning, deep learning, reinforcement learning and dictionary learning methods that have been used for white matter tract, nerve and pathway recognition as well as whole brain streamlines or whole brain tractogram creation. The contribution is to discuss both tractography and tract recognition methods, in addition to extending previous related reviews with most recent methods, covering architectures as well as network details, assess the efficiency of learning-based methods through a comprehensive comparison in this field, and finally demonstrate the important role of learning-based methods in tractography.

Machine Learning to Automatically Differentiate Hypertrophic Cardiomyopathy, Cardiac Light Chain, and Cardiac Transthyretin Amyloidosis: A Multicenter CMR Study.

Weberling LD, Ochs A, Benovoy M, Aus dem Siepen F, Salatzki J, Giannitsis E, Duan C, Maresca K, Zhang Y, Möller J, Friedrich S, Schönland S, Meder B, Friedrich MG, Frey N, André F

pubmed logopapersJun 4 2025
Cardiac amyloidosis is associated with poor outcomes and is caused by the interstitial deposition of misfolded proteins, typically ATTR (transthyretin) or AL (light chains). Although specific therapies during early disease stages exist, the diagnosis is often only established at an advanced stage. Cardiovascular magnetic resonance (CMR) is the gold standard for imaging suspected myocardial disease. However, differentiating cardiac amyloidosis from hypertrophic cardiomyopathy may be challenging, and a reliable method for an image-based classification of amyloidosis subtypes is lacking. This study sought to investigate a CMR machine learning (ML) algorithm to identify and distinguish cardiac amyloidosis. This retrospective, multicenter, multivendor feasibility study included consecutive patients diagnosed with hypertrophic cardiomyopathy or AL/ATTR amyloidosis and healthy volunteers. Standard clinical information, semiautomated CMR imaging data, and qualitative CMR features were integrated into a trained ML algorithm. Four hundred participants (95 healthy, 94 hypertrophic cardiomyopathy, 95 AL, and 116 ATTR) from 56 institutions were included (269 men aged 58.5 [48.4-69.4] years). A 3-stage ML screening cascade sequentially differentiated healthy volunteers from patients, then hypertrophic cardiomyopathy from amyloidosis, and then AL from ATTR. The ML algorithm resulted in an accurate differentiation at each step (area under the curve, 1.0, 0.99, and 0.92, respectively). After reducing included data to demographics and imaging data alone, the performance remained excellent (area under the curve, 0.99, 0.98, and 0.88, respectively), even after removing late gadolinium enhancement imaging data from the model (area under the curve, 1.0, 0.95, 0.86, respectively). A trained ML model using semiautomated CMR imaging data and patient demographics can accurately identify cardiac amyloidosis and differentiate subtypes.

Synthetic multi-inversion time magnetic resonance images for visualization of subcortical structures

Savannah P. Hays, Lianrui Zuo, Anqi Feng, Yihao Liu, Blake E. Dewey, Jiachen Zhuo, Ellen M. Mowry, Scott D. Newsome Jerry L. Prince, Aaron Carass

arxiv logopreprintJun 4 2025
Purpose: Visualization of subcortical gray matter is essential in neuroscience and clinical practice, particularly for disease understanding and surgical planning.While multi-inversion time (multi-TI) T$_1$-weighted (T$_1$-w) magnetic resonance (MR) imaging improves visualization, it is rarely acquired in clinical settings. Approach: We present SyMTIC (Synthetic Multi-TI Contrasts), a deep learning method that generates synthetic multi-TI images using routinely acquired T$_1$-w, T$_2$-weighted (T$_2$-w), and FLAIR images. Our approach combines image translation via deep neural networks with imaging physics to estimate longitudinal relaxation time (T$_1$) and proton density (PD) maps. These maps are then used to compute multi-TI images with arbitrary inversion times. Results: SyMTIC was trained using paired MPRAGE and FGATIR images along with T$_2$-w and FLAIR images. It accurately synthesized multi-TI images from standard clinical inputs, achieving image quality comparable to that from explicitly acquired multi-TI data.The synthetic images, especially for TI values between 400-800 ms, enhanced visualization of subcortical structures and improved segmentation of thalamic nuclei. Conclusion: SyMTIC enables robust generation of high-quality multi-TI images from routine MR contrasts. It generalizes well to varied clinical datasets, including those with missing FLAIR images or unknown parameters, offering a practical solution for improving brain MR image visualization and analysis.

Impact of AI-Generated ADC Maps on Computer-Aided Diagnosis of Prostate Cancer: A Feasibility Study.

Ozyoruk KB, Harmon SA, Yilmaz EC, Gelikman DG, Bagci U, Simon BD, Merino MJ, Lis R, Gurram S, Wood BJ, Pinto PA, Choyke PL, Turkbey B

pubmed logopapersJun 4 2025
To evaluate the impact of AI-generated apparent diffusion coefficient (ADC) maps on diagnostic performance of a 3D U-Net AI model for prostate cancer (PCa) detection and segmentation at biparametric MRI (bpMRI). The study population was retrospectively collected and consisted of 178 patients, including 119 cases and 59 controls. Cases had a mean age of 62.1 years (SD=7.4) and a median prostate-specific antigen (PSA) level of 7.27ng/mL (IQR=5.43-10.55), while controls had a mean age of 63.4 years (SD=7.5) and a median PSA of 6.66ng/mL (IQR=4.29-11.30). All participants underwent 3.0 T T2-weighted turbo spin-echo MRI and high b-value echo-planar diffusion-weighted imaging (bpMRI), followed by either prostate biopsy or radical prostatectomy between January 2013 and December 2022. We compared the lesion detection and segmentation performance of a pretrained 3D U-Net AI model using conventional ADC maps versus AI-generated ADC maps. The Wilcoxon signed-rank test was used for statistical comparison, with 95% confidence intervals (CI) estimated via bootstrapping. A p-value <0.05 was considered significant. AI-ADC maps increased the accuracy of the lesion detection AI model, from 0.70 to 0.78 (p<0.01). Specificity increased from 0.22 to 0.47 (p<0.001), while maintaining high sensitivity, which was 0.94 with conventional ADC maps and 0.93 with AI-ADC maps (p>0.05). Mean dice similarity coefficients (DSC) for conventional ADC maps was 0.276, while AI-ADC maps showed a mean DSC of 0.225 (p<0.05). In the subset of patients with ISUP≥2, standard ADC maps demonstrated a mean DSC of 0.282 compared to 0.230 for AI-ADC maps (p<0.05). AI-generated ADC maps can improve performance of computer-aided diagnosis of prostate cancer.

Subgrouping autism and ADHD based on structural MRI population modelling centiles.

Pecci-Terroba C, Lai MC, Lombardo MV, Chakrabarti B, Ruigrok ANV, Suckling J, Anagnostou E, Lerch JP, Taylor MJ, Nicolson R, Georgiades S, Crosbie J, Schachar R, Kelley E, Jones J, Arnold PD, Seidlitz J, Alexander-Bloch AF, Bullmore ET, Baron-Cohen S, Bedford SA, Bethlehem RAI

pubmed logopapersJun 4 2025
Autism and attention deficit hyperactivity disorder (ADHD) are two highly heterogeneous neurodevelopmental conditions with variable underlying neurobiology. Imaging studies have yielded varied results, and it is now clear that there is unlikely to be one characteristic neuroanatomical profile of either condition. Parsing this heterogeneity could allow us to identify more homogeneous subgroups, either within or across conditions, which may be more clinically informative. This has been a pivotal goal for neurodevelopmental research using both clinical and neuroanatomical features, though results thus far have again been inconsistent with regards to the number and characteristics of subgroups. Here, we use population modelling to cluster a multi-site dataset based on global and regional centile scores of cortical thickness, surface area and grey matter volume. We use HYDRA, a novel semi-supervised machine learning algorithm which clusters based on differences to controls and compare its performance to a traditional clustering approach. We identified distinct subgroups within autism and ADHD, as well as across diagnosis, often with opposite neuroanatomical alterations relatively to controls. These subgroups were characterised by different combinations of increased or decreased patterns of morphometrics. We did not find significant clinical differences across subgroups. Crucially, however, the number of subgroups and their membership differed vastly depending on chosen features and the algorithm used, highlighting the impact and importance of careful method selection. We highlight the importance of examining heterogeneity in autism and ADHD and demonstrate that population modelling is a useful tool to study subgrouping in autism and ADHD. We identified subgroups with distinct patterns of alterations relative to controls but note that these results rely heavily on the algorithm used and encourage detailed reporting of methods and features used in future studies.

Rad-Path Correlation of Deep Learning Models for Prostate Cancer Detection on MRI

Verde, A. S. C., de Almeida, J. G., Mendes, F., Pereira, M., Lopes, R., Brito, M. J., Urbano, M., Correia, P. S., Gaivao, A. M., Firpo-Betancourt, A., Fonseca, J., Matos, C., Regge, D., Marias, K., Tsiknakis, M., ProCAncer-I Consortium,, Conceicao, R. C., Papanikolaou, N.

medrxiv logopreprintJun 4 2025
While Deep Learning (DL) models trained on Magnetic Resonance Imaging (MRI) have shown promise for prostate cancer detection, their lack of direct biological validation often undermines radiologists trust and hinders clinical adoption. Radiologic-histopathologic (rad-path) correlation has the potential to validate MRI-based lesion detection using digital histopathology. This study uses automated and manually annotated digital histopathology slides as a standard of reference to evaluate the spatial extent of lesion annotations derived from both radiologist interpretations and DL models previously trained on prostate bi-parametric MRI (bp-MRI). 117 histopathology slides were used as reference. Prospective patients with clinically significant prostate cancer performed a bp-MRI examination before undergoing a robotic radical prostatectomy, and each prostate specimen was sliced using a 3D-printed patient-specific mold to ensure a direct comparison between pre-operative imaging and histopathology slides. The histopathology slides and their corresponding T2-weighted MRI images were co-registered. We trained DL models for cancer detection on large retrospective datasets of T2-w MRI only, bp-MRI and histopathology images and did inference in a prospective patient cohort. We evaluated the spatial extent between detected lesions and between detected lesions and the histopathological and radiological ground-truth, using the Dice similarity coefficient (DSC). The DL models trained on digital histopathology tiles and MRI images demonstrated promising capabilities in lesion detection. A low overlap was observed between the lesion detection masks generated by the histopathology and bp-MRI models, with a DSC = 0.10. However, the overlap was equivalent (DSC = 0.08) between radiologist annotations and histopathology ground truth. A rad-path correlation pipeline was established in a prospective patient cohort with prostate cancer undergoing surgery. The correlation between rad-path DL models was low but comparable to the overlap between annotations. While DL models show promise in prostate cancer detection, challenges remain in integrating MRI-based predictions with histopathological findings.
Page 34 of 72720 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.