Sort by:
Page 33 of 45442 results

Enhancing pancreatic cancer detection in CT images through secretary wolf bird optimization and deep learning.

Mekala S, S PK

pubmed logopapersJun 5 2025
The pancreas is a gland in the abdomen that helps to produce hormones and digest food. The irregular development of tissues in the pancreas is termed as pancreatic cancer. Identification of pancreatic tumors early is significant for enhancing survival rate and providing appropriate treatment. Thus, an efficient Secretary Wolf Bird Optimization (SeWBO)_Efficient DenseNet is presented for pancreatic tumor detection using Computed Tomography (CT) scans. Firstly, the input pancreatic CT image is accumulated from a database and subjected to image preprocessing using a bilateral filter. After this, lesion is segmented by utilizing Parallel Reverse Attention Network (PraNet), and hyperparameters of PraNet are enhanced by using the proposed SeWBO. The SeWBO is designed by incorporating Wolf Bird Optimization (WBO) and the Secretary Bird Optimization Algorithm (SBOA). Then, features like Complete Local Binary Pattern (CLBP) with Discrete Wavelet Transformation (DWT), statistical features, and Shape Local Binary Texture (SLBT) are extracted. Finally, pancreatic tumor detection is performed by SeWBO_Efficient DenseNet. Here, Efficient DenseNet is developed by combining EfficientNet and DenseNet. Moreover, the proposed SeWBO_Efficient DenseNet achieves better True Negative Rate (TNR), accuracy, and True Positive Rate (TPR), of 93.596%, 94.635%, and 92.579%.

Artificial intelligence-based detection of dens invaginatus in panoramic radiographs.

Sarı AH, Sarı H, Magat G

pubmed logopapersJun 5 2025
The aim of this study was to automatically detect teeth with dens invaginatus (DI) in panoramic radiographs using deep learning algorithms and to compare the success of the algorithms. For this purpose, 400 panoramic radiographs with DI were collected from the faculty database and separated into 60% training, 20% validation and 20% test images. The training and validation images were labeled by oral, dental and maxillofacial radiologists and augmented with various augmentation methods, and the improved models were asked for the images allocated for the test phase and the results were evaluated according to performance measures including accuracy, sensitivity, F1 score and mean detection time. According to the test results, YOLOv8 achieved a precision, sensitivity and F1 score of 0.904 and was the fastest detection model with an average detection time of 0.041. The Faster R-CNN model achieved 0.912 precision, 0.904 sensitivity and 0.907 F1 score, with an average detection time of 0.1 s. The YOLOv9 algorithm showed the most successful performance with 0.946 precision, 0.930 sensitivity, 0.937 F1 score value and the average detection speed per image was 0.158 s. According to the results obtained, all models achieved over 90% success. YOLOv8 was relatively more successful in detection speed and YOLOv9 in other performance criteria. Faster R-CNN ranked second in all criteria.

Rad-Path Correlation of Deep Learning Models for Prostate Cancer Detection on MRI

Verde, A. S. C., de Almeida, J. G., Mendes, F., Pereira, M., Lopes, R., Brito, M. J., Urbano, M., Correia, P. S., Gaivao, A. M., Firpo-Betancourt, A., Fonseca, J., Matos, C., Regge, D., Marias, K., Tsiknakis, M., ProCAncer-I Consortium,, Conceicao, R. C., Papanikolaou, N.

medrxiv logopreprintJun 4 2025
While Deep Learning (DL) models trained on Magnetic Resonance Imaging (MRI) have shown promise for prostate cancer detection, their lack of direct biological validation often undermines radiologists trust and hinders clinical adoption. Radiologic-histopathologic (rad-path) correlation has the potential to validate MRI-based lesion detection using digital histopathology. This study uses automated and manually annotated digital histopathology slides as a standard of reference to evaluate the spatial extent of lesion annotations derived from both radiologist interpretations and DL models previously trained on prostate bi-parametric MRI (bp-MRI). 117 histopathology slides were used as reference. Prospective patients with clinically significant prostate cancer performed a bp-MRI examination before undergoing a robotic radical prostatectomy, and each prostate specimen was sliced using a 3D-printed patient-specific mold to ensure a direct comparison between pre-operative imaging and histopathology slides. The histopathology slides and their corresponding T2-weighted MRI images were co-registered. We trained DL models for cancer detection on large retrospective datasets of T2-w MRI only, bp-MRI and histopathology images and did inference in a prospective patient cohort. We evaluated the spatial extent between detected lesions and between detected lesions and the histopathological and radiological ground-truth, using the Dice similarity coefficient (DSC). The DL models trained on digital histopathology tiles and MRI images demonstrated promising capabilities in lesion detection. A low overlap was observed between the lesion detection masks generated by the histopathology and bp-MRI models, with a DSC = 0.10. However, the overlap was equivalent (DSC = 0.08) between radiologist annotations and histopathology ground truth. A rad-path correlation pipeline was established in a prospective patient cohort with prostate cancer undergoing surgery. The correlation between rad-path DL models was low but comparable to the overlap between annotations. While DL models show promise in prostate cancer detection, challenges remain in integrating MRI-based predictions with histopathological findings.

Impact of AI-Generated ADC Maps on Computer-Aided Diagnosis of Prostate Cancer: A Feasibility Study.

Ozyoruk KB, Harmon SA, Yilmaz EC, Gelikman DG, Bagci U, Simon BD, Merino MJ, Lis R, Gurram S, Wood BJ, Pinto PA, Choyke PL, Turkbey B

pubmed logopapersJun 4 2025
To evaluate the impact of AI-generated apparent diffusion coefficient (ADC) maps on diagnostic performance of a 3D U-Net AI model for prostate cancer (PCa) detection and segmentation at biparametric MRI (bpMRI). The study population was retrospectively collected and consisted of 178 patients, including 119 cases and 59 controls. Cases had a mean age of 62.1 years (SD=7.4) and a median prostate-specific antigen (PSA) level of 7.27ng/mL (IQR=5.43-10.55), while controls had a mean age of 63.4 years (SD=7.5) and a median PSA of 6.66ng/mL (IQR=4.29-11.30). All participants underwent 3.0 T T2-weighted turbo spin-echo MRI and high b-value echo-planar diffusion-weighted imaging (bpMRI), followed by either prostate biopsy or radical prostatectomy between January 2013 and December 2022. We compared the lesion detection and segmentation performance of a pretrained 3D U-Net AI model using conventional ADC maps versus AI-generated ADC maps. The Wilcoxon signed-rank test was used for statistical comparison, with 95% confidence intervals (CI) estimated via bootstrapping. A p-value <0.05 was considered significant. AI-ADC maps increased the accuracy of the lesion detection AI model, from 0.70 to 0.78 (p<0.01). Specificity increased from 0.22 to 0.47 (p<0.001), while maintaining high sensitivity, which was 0.94 with conventional ADC maps and 0.93 with AI-ADC maps (p>0.05). Mean dice similarity coefficients (DSC) for conventional ADC maps was 0.276, while AI-ADC maps showed a mean DSC of 0.225 (p<0.05). In the subset of patients with ISUP≥2, standard ADC maps demonstrated a mean DSC of 0.282 compared to 0.230 for AI-ADC maps (p<0.05). AI-generated ADC maps can improve performance of computer-aided diagnosis of prostate cancer.

Modelling pathological spread through the structural connectome in the frontotemporal dementia clinical spectrum.

Agosta F, Basaia S, Spinelli EG, Facente F, Lumaca L, Ghirelli A, Canu E, Castelnovo V, Sibilla E, Tripodi C, Freri F, Cecchetti G, Magnani G, Caso F, Verde F, Ticozzi N, Silani V, Caroppo P, Prioni S, Villa C, Tremolizzo L, Appollonio I, Raj A, Filippi M

pubmed logopapersJun 3 2025
The ability to predict the spreading of pathology in patients with frontotemporal dementia (FTD) is crucial for early diagnosis and targeted interventions. In this study, we examined the relationship between network vulnerability and longitudinal progression of atrophy in FTD patients, using the network diffusion model (NDM) of the spread of pathology. Thirty behavioural variant FTD (bvFTD), 13 semantic variant primary progressive aphasia (svPPA), 14 non-fluent variant primary progressive aphasia (nfvPPA) and 12 semantic behavioural variant FTD (sbvFTD) patients underwent longitudinal T1-weighted MRI. Fifty young controls (20-31 years of age) underwent multi-shell diffusion MRI scan. An NDM was developed to model progression of FTD pathology as a spreading process from a seed through the healthy structural connectome, using connectivity measures from fractional anisotropy and intracellular volume fraction in young controls. Four disease epicentres were initially identified from the peaks of atrophy of each FTD variant: left insula (bvFTD), left temporal pole (svPPA), right temporal pole (sbvFTD) and left supplementary motor area (nfvPPA). Pearson's correlations were calculated between NDM-predicted atrophy in young controls and the observed longitudinal atrophy in FTD patients over a follow-up period of 24 months. The NDM was then run for all 220 brain seeds to verify whether the four epicentres were among those that yielded the highest correlation. Using the NDM, predictive maps in young controls showed progression of pathology from the peaks of atrophy in svPPA, nfvPPA and sbvFTD over 24 months. svPPA exhibited early involvement of the left temporal and occipital lobes, progressing to extensive left hemisphere impairment. nfvPPA and sbvFTD spread in a similar manner bilaterally to frontal, sensorimotor and temporal regions, with sbvFTD additionally affecting the right hemisphere. Moreover, the NDM-predicted atrophy of each region was positively correlated with longitudinal real atrophy, with a greater effect in svPPA and sbvFTD. In bvFTD, the model starting from the left insula (the peak of atrophy) demonstrated a highly left-lateralized pattern, with pathology spreading to frontal, sensorimotor, temporal and basal ganglia regions, with minimal extension to the contralateral hemisphere by 24 months. However, unlike the atrophy peaks observed in the other three phenotypes, the left insula did not show the strongest correlation between the estimated and real atrophy. Instead, the bilateral superior frontal gyrus emerged as optimal seeds for modelling atrophy spread, showing the highest correlation ranking in both hemispheres. Overall, NDM applied on the intracellular volume fraction connectome yielded higher correlations relative to NDM applied on fractional anisotropy maps. The NDM implementation using the cross-sectional structural connectome is a valuable tool to predict patterns of atrophy and spreading of pathology in FTD clinical variants.

Artificial intelligence for detecting traumatic intracranial haemorrhage with CT: A workflow-oriented implementation.

Abed S, Hergan K, Pfaff J, Dörrenberg J, Brandstetter L, Gradl J

pubmed logopapersJun 3 2025
The objective of this study was to assess the performance of an artificial intelligence (AI) algorithm in detecting intracranial haemorrhages (ICHs) on non-contrast CT scans (NCCT). Another objective was to gauge the department's acceptance of said algorithm. Surveys conducted at three and nine months post-implementation revealed an increase in radiologists' acceptance of the AI tool with an increasing performance. However, a significant portion still preferred an additional physician given comparable cost. Our findings emphasize the importance of careful software implementation into a robust IT architecture.

Artificial intelligence in bone metastasis analysis: Current advancements, opportunities and challenges.

Afnouch M, Bougourzi F, Gaddour O, Dornaika F, Ahmed AT

pubmed logopapersJun 3 2025
Artificial Intelligence is transforming medical imaging, particularly in the analysis of bone metastases (BM), a serious complication of advanced cancers. Machine learning and deep learning techniques offer new opportunities to improve detection, recognition, and segmentation of bone metastasis. Yet, challenges such as limited data, interpretability, and clinical validation remain. Following PRISMA guidelines, we reviewed artificial intelligence methods and applications for bone metastasis analysis across major imaging modalities including CT, MRI, PET, SPECT, and bone scintigraphy. The survey includes traditional machine learning models and modern deep learning architectures such as CNNs and transformers. We also examined available datasets and their effect in developing artificial intelligence in this field. Artificial intelligence models have achieved strong performance across tasks and modalities, with Convolutional Neural Network (CNN) and Transformer architectures showing particularly efficient performance across different tasks. However, limitations persist, including data imbalance, overfitting risks, and the need for greater transparency. Clinical translation is also challenged by regulatory and validation hurdles. Artificial intelligence holds strong potential to improve BM diagnosis and streamline radiology workflows. To reach clinical maturity, future work must address data diversity, model explainability, and large-scale validation, which are critical steps for being trusted to be integrated into the oncology care routines.

Current AI technologies in cancer diagnostics and treatment.

Tiwari A, Mishra S, Kuo TR

pubmed logopapersJun 2 2025
Cancer continues to be a significant international health issue, which demands the invention of new methods for early detection, precise diagnoses, and personalized treatments. Artificial intelligence (AI) has rapidly become a groundbreaking component in the modern era of oncology, offering sophisticated tools across the range of cancer care. In this review, we performed a systematic survey of the current status of AI technologies used for cancer diagnoses and therapeutic approaches. We discuss AI-facilitated imaging diagnostics using a range of modalities such as computed tomography, magnetic resonance imaging, positron emission tomography, ultrasound, and digital pathology, highlighting the growing role of deep learning in detecting early-stage cancers. We also explore applications of AI in genomics and biomarker discovery, liquid biopsies, and non-invasive diagnoses. In therapeutic interventions, AI-based clinical decision support systems, individualized treatment planning, and AI-facilitated drug discovery are transforming precision cancer therapies. The review also evaluates the effects of AI on radiation therapy, robotic surgery, and patient management, including survival predictions, remote monitoring, and AI-facilitated clinical trials. Finally, we discuss important challenges such as data privacy, interpretability, and regulatory issues, and recommend future directions that involve the use of federated learning, synthetic biology, and quantum-boosted AI. This review highlights the groundbreaking potential of AI to revolutionize cancer care by making diagnostics, treatments, and patient management more precise, efficient, and personalized.

Robust Detection of Out-of-Distribution Shifts in Chest X-ray Imaging.

Karimi F, Farnia F, Bae KT

pubmed logopapersJun 2 2025
This study addresses the critical challenge of detecting out-of-distribution (OOD) chest X-rays, where subtle view differences between lateral and frontal radiographs can lead to diagnostic errors. We develop a GAN-based framework that learns the inherent feature distribution of frontal views from the MIMIC-CXR dataset through latent space optimization and Kolmogorov-Smirnov statistical testing. Our approach generates similarity scores to reliably identify OOD cases, achieving exceptional performance with 100% precision, and 97.5% accuracy in detecting lateral views. The method demonstrates consistent reliability across operating conditions, maintaining accuracy above 92.5% and precision exceeding 93% under varying detection thresholds. These results provide both theoretical insights and practical solutions for OOD detection in medical imaging, demonstrating how GANs can establish feature representations for identifying distributional shifts. By significantly improving model reliability when encountering view-based anomalies, our framework enhances the clinical applicability of deep learning systems, ultimately contributing to improved diagnostic safety and patient outcomes.

Artificial Intelligence-Driven Innovations in Diabetes Care and Monitoring

Abdul Rahman, S., Mahadi, M., Yuliana, D., Budi Susilo, Y. K., Ariffin, A. E., Amgain, K.

medrxiv logopreprintJun 2 2025
This study explores Artificial Intelligence (AI)s transformative role in diabetes care and monitoring, focusing on innovations that optimize patient outcomes. AI, particularly machine learning and deep learning, significantly enhances early detection of complications like diabetic retinopathy and improves screening efficacy. The methodology employs a bibliometric analysis using Scopus, VOSviewer, and Publish or Perish, analyzing 235 articles from 2023-2025. Results indicate a strong interdisciplinary focus, with Computer Science and Medicine being dominant subject areas (36.9% and 12.9% respectively). Bibliographic coupling reveals robust international collaborations led by the U.S. (1558.52 link strength), UK, and China, with key influential documents by Zhu (2023c) and Annuzzi (2023). This research highlights AIs impact on enhancing monitoring, personalized treatment, and proactive care, while acknowledging challenges in data privacy and ethical deployment. Future work should bridge technological advancements with real-world implementation to create equitable and efficient diabetes care systems.
Page 33 of 45442 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.