Sort by:
Page 328 of 3433422 results

Distinct brain age gradients across the adult lifespan reflect diverse neurobiological hierarchies.

Riccardi N, Teghipco A, Newman-Norlund S, Newman-Norlund R, Rangus I, Rorden C, Fridriksson J, Bonilha L

pubmed logopapersMay 25 2025
'Brain age' is a biological clock typically used to describe brain health with one number, but its relationship with established gradients of cortical organization remains unclear. We address this gap by leveraging a data-driven, region-specific brain age approach in 335 neurologically intact adults, using a convolutional neural network (volBrain) to estimate regional brain ages directly from structural MRI without a predefined set of morphometric properties. Six distinct gradients of brain aging are replicated in two independent cohorts. Spatial patterns of accelerated brain aging in older adults quantitatively align with the archetypal sensorimotor-to-association axis of cortical organization. Other brain aging gradients reflect neurobiological hierarchies such as gene expression and externopyramidization. Participant-level correspondences to brain age gradients are associated with cognitive and sensorimotor performance and explained behavioral variance more effectively than global brain age. These results suggest that regional brain age patterns reflect fundamental principles of cortical organization and behavior.

MobNas ensembled model for breast cancer prediction.

Shahzad T, Saqib SM, Mazhar T, Iqbal M, Almogren A, Ghadi YY, Saeed MM, Hamam H

pubmed logopapersMay 25 2025
Breast cancer poses a real and immense threat to humankind, thus a need to develop a way of diagnosing this devastating disease early, accurately, and in a simpler manner. Thus, while substantial progress has been made in developing machine learning algorithms, deep learning, and transfer learning models, issues with diagnostic accuracy and minimizing diagnostic errors persist. This paper introduces MobNAS, a model that uses MobileNetV2 and NASNetLarge to sort breast cancer images into benign, malignant, or normal classes. The study employs a multi-class classification design and uses a publicly available dataset comprising 1,578 ultrasound images, including 891 benign, 421 malignant, and 266 normal cases. By deploying MobileNetV2, it is easy to work well on devices with less computational capability than is used by NASNetLarge, which enhances its applicability and effectiveness in other tasks. The performance of the proposed MobNAS model was tested on the breast cancer image dataset, and the accuracy level achieved was 97%, the Mean Absolute Error (MAE) was 0.05, and the Matthews Correlation Coefficient (MCC) was 95%. From the findings of this research, it is evident that MobNAS can enhance diagnostic accuracy and reduce existing shortcomings in breast cancer detection.

MedITok: A Unified Tokenizer for Medical Image Synthesis and Interpretation

Chenglong Ma, Yuanfeng Ji, Jin Ye, Zilong Li, Chenhui Wang, Junzhi Ning, Wei Li, Lihao Liu, Qiushan Guo, Tianbin Li, Junjun He, Hongming Shan

arxiv logopreprintMay 25 2025
Advanced autoregressive models have reshaped multimodal AI. However, their transformative potential in medical imaging remains largely untapped due to the absence of a unified visual tokenizer -- one capable of capturing fine-grained visual structures for faithful image reconstruction and realistic image synthesis, as well as rich semantics for accurate diagnosis and image interpretation. To this end, we present MedITok, the first unified tokenizer tailored for medical images, encoding both low-level structural details and high-level clinical semantics within a unified latent space. To balance these competing objectives, we introduce a novel two-stage training framework: a visual representation alignment stage that cold-starts the tokenizer reconstruction learning with a visual semantic constraint, followed by a textual semantic representation alignment stage that infuses detailed clinical semantics into the latent space. Trained on the meticulously collected large-scale dataset with over 30 million medical images and 2 million image-caption pairs, MedITok achieves state-of-the-art performance on more than 30 datasets across 9 imaging modalities and 4 different tasks. By providing a unified token space for autoregressive modeling, MedITok supports a wide range of tasks in clinical diagnostics and generative healthcare applications. Model and code will be made publicly available at: https://github.com/Masaaki-75/meditok.

CDPDNet: Integrating Text Guidance with Hybrid Vision Encoders for Medical Image Segmentation

Jiong Wu, Yang Xing, Boxiao Yu, Wei Shao, Kuang Gong

arxiv logopreprintMay 25 2025
Most publicly available medical segmentation datasets are only partially labeled, with annotations provided for a subset of anatomical structures. When multiple datasets are combined for training, this incomplete annotation poses challenges, as it limits the model's ability to learn shared anatomical representations among datasets. Furthermore, vision-only frameworks often fail to capture complex anatomical relationships and task-specific distinctions, leading to reduced segmentation accuracy and poor generalizability to unseen datasets. In this study, we proposed a novel CLIP-DINO Prompt-Driven Segmentation Network (CDPDNet), which combined a self-supervised vision transformer with CLIP-based text embedding and introduced task-specific text prompts to tackle these challenges. Specifically, the framework was constructed upon a convolutional neural network (CNN) and incorporated DINOv2 to extract both fine-grained and global visual features, which were then fused using a multi-head cross-attention module to overcome the limited long-range modeling capability of CNNs. In addition, CLIP-derived text embeddings were projected into the visual space to help model complex relationships among organs and tumors. To further address the partial label challenge and enhance inter-task discriminative capability, a Text-based Task Prompt Generation (TTPG) module that generated task-specific prompts was designed to guide the segmentation. Extensive experiments on multiple medical imaging datasets demonstrated that CDPDNet consistently outperformed existing state-of-the-art segmentation methods. Code and pretrained model are available at: https://github.com/wujiong-hub/CDPDNet.git.

CDPDNet: Integrating Text Guidance with Hybrid Vision Encoders for Medical Image Segmentation

Jiong Wu, Yang Xing, Boxiao Yu, Wei Shao, Kuang Gong

arxiv logopreprintMay 25 2025
Most publicly available medical segmentation datasets are only partially labeled, with annotations provided for a subset of anatomical structures. When multiple datasets are combined for training, this incomplete annotation poses challenges, as it limits the model's ability to learn shared anatomical representations among datasets. Furthermore, vision-only frameworks often fail to capture complex anatomical relationships and task-specific distinctions, leading to reduced segmentation accuracy and poor generalizability to unseen datasets. In this study, we proposed a novel CLIP-DINO Prompt-Driven Segmentation Network (CDPDNet), which combined a self-supervised vision transformer with CLIP-based text embedding and introduced task-specific text prompts to tackle these challenges. Specifically, the framework was constructed upon a convolutional neural network (CNN) and incorporated DINOv2 to extract both fine-grained and global visual features, which were then fused using a multi-head cross-attention module to overcome the limited long-range modeling capability of CNNs. In addition, CLIP-derived text embeddings were projected into the visual space to help model complex relationships among organs and tumors. To further address the partial label challenge and enhance inter-task discriminative capability, a Text-based Task Prompt Generation (TTPG) module that generated task-specific prompts was designed to guide the segmentation. Extensive experiments on multiple medical imaging datasets demonstrated that CDPDNet consistently outperformed existing state-of-the-art segmentation methods. Code and pretrained model are available at: https://github.com/wujiong-hub/CDPDNet.git.

Integrating Large language models into radiology workflow: Impact of generating personalized report templates from summary.

Gupta A, Hussain M, Nikhileshwar K, Rastogi A, Rangarajan K

pubmed logopapersMay 25 2025
To evaluate feasibility of large language models (LLMs) to convert radiologist-generated report summaries into personalized report templates, and assess its impact on scan reporting time and quality. In this retrospective study, 100 CT scans from oncology patients were randomly divided into two equal sets. Two radiologists generated conventional reports for one set and summary reports for the other, and vice versa. Three LLMs - GPT-4, Google Gemini, and Claude Opus - generated complete reports from the summaries using institution-specific generic templates. Two expert radiologists qualitatively evaluated the radiologist summaries and LLM-generated reports using the ACR RADPEER scoring system, using conventional radiologist reports as reference. Reporting time for conventional versus summary-based reports was compared, and LLM-generated reports were analyzed for errors. Quantitative similarity and linguistic metrics were computed to assess report alignment across models with the original radiologist-generated report summaries. Statistical analyses were performed using Python 3.0 to identify significant differences in reporting times, error rates and quantitative metrics. The average reporting time was significantly shorter for summary method (6.76 min) compared to conventional method (8.95 min) (p < 0.005). Among the 100 radiologist summaries, 10 received RADPEER scores worse than 1, with three deemed to have clinically significant discrepancies. Only one LLM-generated report received a worse RADPEER score than its corresponding summary. Error frequencies among LLM-generated reports showed no significant differences across models, with template-related errors being most common (χ<sup>2</sup> = 1.146, p = 0.564). Quantitative analysis indicated significant differences in similarity and linguistic metrics among the three LLMs (p < 0.05), reflecting unique generation patterns. Summary-based scan reporting along with use of LLMs to generate complete personalized report templates can shorten reporting time while maintaining the report quality. However, there remains a need for human oversight to address errors in the generated reports. Summary-based reporting of radiological studies along with the use of large language models to generate tailored reports using generic templates has the potential to make the workflow more efficient by shortening the reporting time while maintaining the quality of reporting.

Evaluation of synthetic training data for 3D intraoral reconstruction of cleft patients from single images.

Lingens L, Lill Y, Nalabothu P, Benitez BK, Mueller AA, Gross M, Solenthaler B

pubmed logopapersMay 24 2025
This study investigates the effectiveness of synthetic training data in predicting 2D landmarks for 3D intraoral reconstruction in cleft lip and palate patients. We take inspiration from existing landmark prediction and 3D reconstruction techniques for faces and demonstrate their potential in medical applications. We generated both real and synthetic datasets from intraoral scans and videos. A convolutional neural network was trained using a negative-Gaussian log-likelihood loss function to predict 2D landmarks and their corresponding confidence scores. The predicted landmarks were then used to fit a statistical shape model to generate 3D reconstructions from individual images. We analyzed the model's performance on real patient data and explored the dataset size required to overcome the domain gap between synthetic and real images. Our approach generates satisfying results on synthetic data and shows promise when tested on real data. The method achieves rapid 3D reconstruction from single images and can therefore provide significant value in day-to-day medical work. Our results demonstrate that synthetic training data are viable for training models to predict 2D landmarks and reconstruct 3D meshes in patients with cleft lip and palate. This approach offers an accessible, low-cost alternative to traditional methods, using smartphone technology for noninvasive, rapid, and accurate 3D reconstructions in clinical settings.

Deep learning reconstruction combined with contrast-enhancement boost in dual-low dose CT pulmonary angiography: a two-center prospective trial.

Shen L, Lu J, Zhou C, Bi Z, Ye X, Zhao Z, Xu M, Zeng M, Wang M

pubmed logopapersMay 24 2025
To investigate whether the deep learning reconstruction (DLR) combined with contrast-enhancement-boost (CE-boost) technique can improve the diagnostic quality of CT pulmonary angiography (CTPA) at low radiation and contrast doses, compared with routine CTPA using hybrid iterative reconstruction (HIR). This prospective two-center study included 130 patients who underwent CTPA for suspected pulmonary embolism. Patients were randomly divided into two groups: the routine CTPA group, reconstructed using HIR; and the dual-low dose CTPA group, reconstructed using HIR and DLR, additionally combined with the CE-boost to generate HIR-boost and DLR-boost images. Signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) of pulmonary arteries were quantitatively assessed. Two experienced radiologists independently ordered CT images (5, best; 1, worst) based on overall image noise and vascular contrast. Diagnostic performance for PE detection was calculated for each dataset. Patient demographics were similar between groups. Compared to HIR images of the routine group, DLR-boost images of the dual-low dose group were significantly better at qualitative scores (p < 0.001). The CT values of pulmonary arteries between the DLR-boost and the HIR images were comparable (p > 0.05), whereas the SNRs and CNRs of pulmonary arteries in the DLR-boost images were the highest among all five datasets (p < 0.001). The AUCs of DLR, HIR-boost, and DLR-boost were 0.933, 0.924, and 0.986, respectively (all p > 0.05). DLR combined with CE-boost technique can significantly improve the image quality of CTPA with reduced radiation and contrast doses, facilitating a more accurate diagnosis of pulmonary embolism. Question The dual-low dose protocol is essential for detecting pulmonary emboli (PE) in follow-up CT pulmonary angiography (PA), yet effective solutions are still lacking. Findings Deep learning reconstruction (DLR)-boost with reduced radiation and contrast doses demonstrated higher quantitative and qualitative image quality than hybrid-iterative reconstruction in the routine CTPA. Clinical relevance DLR-boost based low-radiation and low-contrast-dose CTPA protocol offers a novel strategy to further enhance the image quality and diagnosis accuracy for pulmonary embolism patients.

Evaluation of locoregional invasiveness of early lung adenocarcinoma manifesting as ground-glass nodules via [<sup>68</sup>Ga]Ga-FAPI-46 PET/CT imaging.

Ruan D, Shi S, Guo W, Pang Y, Yu L, Cai J, Wu Z, Wu H, Sun L, Zhao L, Chen H

pubmed logopapersMay 24 2025
Accurate differentiation of the histologic invasiveness of early-stage lung adenocarcinoma is crucial for determining surgical strategies. This study aimed to investigate the potential of [<sup>68</sup>Ga]Ga-FAPI-46 PET/CT in assessing the invasiveness of early lung adenocarcinoma presenting as ground-glass nodules (GGNs) and identifying imaging features with strong predictive potential. This prospective study (NCT04588064) was conducted between July 2020 and July 2022, focusing on GGNs that were confirmed postoperatively to be either invasive adenocarcinoma (IAC), minimally invasive adenocarcinoma (MIA), or precursor glandular lesions (PGL). A total of 45 patients with 53 pulmonary GGNs were included in the study: 19 patients with GGNs associated with PGL-MIA and 34 with IAC. Lung nodules were segmented using the Segment Anything Model in Medical Images (MedSAM) and the PET Tumor Segmentation Extension. Clinical characteristics, along with conventional and high-throughput radiomics features from High-resolution CT (HRCT) and PET scans, were analysed. The predictive performance of these features in differentiating between PGL or MIA (PGL-MIA) and IAC was assessed using 5-fold cross-validation across six machine learning algorithms. Model validation was performed on an independent external test set (n = 11). The Chi-squared, Fisher's exact, and DeLong tests were employed to compare the performance of the models. The maximum standardised uptake value (SUVmax) derived from [<sup>68</sup>Ga]Ga-FAPI-46 PET was identified as an independent predictor of IAC. A cut-off value of 1.82 yielded a sensitivity of 94% (32/34), specificity of 84% (16/19), and an overall accuracy of 91% (48/53) in the training set, while achieving 100% (12/12) accuracy in the external test set. Radiomics-based classification further improved diagnostic performance, achieving a sensitivity of 97% (33/34), specificity of 89% (17/19), accuracy of 94% (50/53), and an area under the receiver operating characteristic curve (AUC) of 0.97 [95% CI: 0.93-1.00]. Compared with the CT-based radiomics model and the PET-based model, the combined PET/CT radiomics model did not show significant improvement in predictive performance. The key predictive feature was [<sup>68</sup>Ga]Ga-FAPI-46 PET log-sigma-7-mm-3D_firstorder_RootMeanSquared. The SUVmax derived from [<sup>68</sup>Ga]Ga-FAPI-46 PET/CT can effectively differentiate the invasiveness of early-stage lung adenocarcinoma manifesting as GGNs. Integrating high-throughput features from [<sup>68</sup>Ga]Ga-FAPI-46 PET/CT images can considerably enhance classification accuracy. NCT04588064; URL: https://clinicaltrials.gov/study/NCT04588064 .

Using machine learning models based on cardiac magnetic resonance parameters to predict the prognostic in children with myocarditis.

Hu D, Cui M, Zhang X, Wu Y, Liu Y, Zhai D, Guo W, Ju S, Fan G, Cai W

pubmed logopapersMay 24 2025
To develop machine learning (ML) models incorporating explanatory cardiac magnetic resonance (CMR) parameters for predicting the prognosis of myocarditis in pediatric patients. 77 patients with pediatric myocarditis diagnosed clinically between January 2020 and December 2023 were enrolled retrospectively. All patients were examined by ultrasound, electrocardiogram (ECG), serum biomarkers on admission, and CMR scan to obtain 16 explanatory CMR parameters. All patients underwent follow-up echocardiography and CMR. Patients were divided into two groups according to the occurrence of adverse cardiac events (ACE) during follow-up: the poor prognosis group (n = 23) and the good prognosis group (n = 54). Four models were established, including logistic regression (LR), random forest (RF), support vector machine classifier (SVC), and extreme gradient boosting (XGBoost) model. The performance of each model was evaluated by the area under the receiver operating characteristic curve (AUC). Model interpretation was generated by Shapley additive interpretation (Shap). Among the four models, the three most important features were late gadolinium enhancement (LGE), left ventricular ejection fraction (LVEF), and SAXPeak Global Circumferential Strain (SAXGCS). In addition, LGE, LVEF, SAXGCS, and LAXPeak Global Longitudinal Strain (LAXGLS) were selected as the key predictors for all four models. Four interpretable CMR parameters were extracted, among which the LR model had the best prediction performance. The AUC, sensitivity, and specificity were 0.893, 0.820, and 0.944, respectively. The findings indicate that the presence of LGE on CMR imaging, along with reductions in LVEF, SAXGCS, and LAXGLS, are predictive of poor prognosis in patients with acute myocarditis. ML models, particularly the LR model, demonstrate the potential to predict the prognosis of children with myocarditis. These findings provide valuable insights for cardiologists, supporting more informed clinical decision-making and potentially enhancing patient outcomes in pediatric myocarditis cases.
Page 328 of 3433422 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.