Sort by:
Page 31 of 41404 results

Non-invasive classification of non-neoplastic and neoplastic gallbladder polyps based on clinical imaging and ultrasound radiomics features: An interpretable machine learning model.

Dou M, Liu H, Tang Z, Quan L, Xu M, Wang F, Du Z, Geng Z, Li Q, Zhang D

pubmed logopapersJun 1 2025
Gallbladder (GB) adenomas, precancerous lesions for gallbladder carcinoma (GBC), lack reliable non-invasive tools for preoperative differentiation of neoplastic polyps from cholesterol polyps. This study aimed to evaluate an interpretable machine learning (ML) combined model for the precise differentiation of the pathological nature of gallbladder polyps (GPs). This study consecutively enrolled 744 patients from Xi'an Jiaotong University First Affiliated Hospital between January 2017 and December 2023 who were pathologically diagnosed postoperatively with cholesterol polyps, adenomas or T1-stage GBC. Radiomics features were extracted and selected, while clinical variables were subjected to univariate and multivariate logistic regression analyses to identify significant predictors of neoplastic polyps. A optimal ML-based radiomics model was developed, and separate clinical, US and combined models were constructed. Finally, SHapley Additive exPlanations (SHAP) was employed to visualize the classification process. The areas under the curves (AUCs) of the CatBoost-based radiomics model were 0.852 (95 % CI: 0.818-0.884) and 0.824 (95 % CI: 0.758-0.881) for the training and test sets, respectively. The combined model demonstrated the best performance with an improved AUC of 0.910 (95 % CI: 0.885-0.934) and 0.869 (95 % CI: 0.812-0.919), outperformed the clinical, radiomics, and US model (all P < 0.05), and reduced the rate of unnecessary cholecystectomies. SHAP analysis revealed that the polyp short diameter is a crucial independent risk factor in predicting the nature of the GPs. The ML-based combined model may be an effective non-invasive tool for improving the precision treatment of GPs, utilizing SHAP to visualize the classification process can enhance its clinical application.

Advancing Acoustic Droplet Vaporization for Tissue Characterization Using Quantitative Ultrasound and Transfer Learning.

Kaushik A, Fabiilli ML, Myers DD, Fowlkes JB, Aliabouzar M

pubmed logopapersJun 1 2025
Acoustic droplet vaporization (ADV) is an emerging technique with expanding applications in biomedical ultrasound. ADV-generated bubbles can function as microscale probes that provide insights into the mechanical properties of their surrounding microenvironment. This study investigated the acoustic and imaging characteristics of phase-shift nanodroplets in fibrin-based, tissue-mimicking hydrogels using passive cavitation detection and active imaging techniques, including B-mode and contrast-enhanced ultrasound. The findings demonstrated that the backscattered signal intensities and pronounced nonlinear acoustic responses, including subharmonic and higher harmonic frequencies, of ADV-generated bubbles correlated inversely with fibrin density. Additionally, we quantified the mean echo intensity, bubble cloud area, and second-order texture features of the generated ADV bubbles across varying fibrin densities. ADV bubbles in softer hydrogels displayed significantly higher mean echo intensities, larger bubble cloud areas, and more heterogeneous textures. In contrast, texture uniformity, characterized by variance, homogeneity, and energy, correlated directly with fibrin density. Furthermore, we incorporated transfer learning with convolutional neural networks, adapting AlexNet into two specialized models for differentiating fibrin hydrogels. The integration of deep learning techniques with ADV offers great potential, paving the way for future advancements in biomedical diagnostics.

Deep learning based on ultrasound images predicting cervical lymph node metastasis in postoperative patients with differentiated thyroid carcinoma.

Fan F, Li F, Wang Y, Liu T, Wang K, Xi X, Wang B

pubmed logopapersJun 1 2025
To develop a deep learning (DL) model based on ultrasound (US) images of lymph nodes for predicting cervical lymph node metastasis (CLNM) in postoperative patients with differentiated thyroid carcinoma (DTC). Retrospective collection of 352 lymph nodes from 330 patients with cytopathology findings between June 2021 and December 2023 at our institution. The database was randomly divided into the training and test cohort at an 8:2 ratio. The DL basic model of longitudinal and cross-sectional of lymph nodes was constructed based on ResNet50 respectively, and the results of the 2 basic models were fused (1:1) to construct a longitudinal + cross-sectional DL model. Univariate and multivariate analyses were used to assess US features and construct a conventional US model. Subsequently, a combined model was constructed by integrating DL and US. The diagnostic accuracy of the longitudinal + cross-sectional DL model was higher than that of longitudinal or cross-sectional alone. The area under the curve (AUC) of the combined model (US + DL) was 0.855 (95% CI, 0.767-0.942) and the accuracy, sensitivity, and specificity were 0.786 (95% CI, 0.671-0.875), 0.972 (95% CI, 0.855-0.999), and 0.588 (95% CI, 0.407-0.754), respectively. Compared with US and DL models, the integrated discrimination improvement and net reclassification improvement of the combined models are both positive. This preliminary study shows that the DL model based on US images of lymph nodes has a high diagnostic efficacy for predicting CLNM in postoperative patients with DTC, and the combined model of US+DL is superior to single conventional US and DL for predicting CLNM in this population. We innovatively used DL of lymph node US images to predict the status of cervical lymph nodes in postoperative patients with DTC.

SSAT-Swin: Deep Learning-Based Spinal Ultrasound Feature Segmentation for Scoliosis Using Self-Supervised Swin Transformer.

Zhang C, Zheng Y, McAviney J, Ling SH

pubmed logopapersJun 1 2025
Scoliosis, a 3-D spinal deformity, requires early detection and intervention. Ultrasound curve angle (UCA) measurement using ultrasound images has emerged as a promising diagnostic tool. However, calculating the UCA directly from ultrasound images remains challenging due to low contrast, high noise, and irregular target shapes. Accurate segmentation results are therefore crucial to enhance image clarity and precision prior to UCA calculation. We propose the SSAT-Swin model, a transformer-based multi-class segmentation framework designed for ultrasound image analysis in scoliosis diagnosis. The model integrates a boundary-enhancement module in the decoder and a channel attention module in the skip connections. Additionally, self-supervised proxy tasks are used during pre-training on 1,170 images, followed by fine-tuning on 109 image-label pairs. The SSAT-Swin achieved Dice scores of 85.6% and Jaccard scores of 74.5%, with a 92.8% scoliosis bone feature detection rate, outperforming state-of-the-art models. Self-supervised learning enhances the model's ability to capture global context information, making it well-suited for addressing the unique challenges of ultrasound images, ultimately advancing scoliosis assessment through more accurate segmentation.

A scoping review on the integration of artificial intelligence in point-of-care ultrasound: Current clinical applications.

Kim J, Maranna S, Watson C, Parange N

pubmed logopapersJun 1 2025
Artificial intelligence (AI) is used increasingly in point-of-care ultrasound (POCUS). However, the true role, utility, advantages, and limitations of AI tools in POCUS have been poorly understood. to conduct a scoping review on the current literature of AI in POCUS to identify (1) how AI is being applied in POCUS, and (2) how AI in POCUS could be utilized in clinical settings. The review followed the JBI scoping review methodology. A search strategy was conducted in Medline, Embase, Emcare, Scopus, Web of Science, Google Scholar, and AI POCUS manufacturer websites. Selection criteria, evidence screening, and selection were performed in Covidence. Data extraction and analysis were performed on Microsoft Excel by the primary investigator and confirmed by the secondary investigators. Thirty-three papers were included. AI POCUS on the cardiopulmonary region was the most prominent in the literature. AI was most frequently used to automatically measure biometry using POCUS images. AI POCUS was most used in acute settings. However, novel applications in non-acute and low-resource settings were also explored. AI had the potential to increase POCUS accessibility and usability, expedited care and management, and had a reasonably high diagnostic accuracy in limited applications such as measurement of Left Ventricular Ejection Fraction, Inferior Vena Cava Collapsibility Index, Left-Ventricular Outflow Tract Velocity Time Integral and identifying B-lines of the lung. However, AI could not interpret poor images, underperformed compared to standard-of-care diagnostic methods, and was less effective in patients with specific disease states, such as severe illnesses that limit POCUS image acquisition. This review uncovered the applications of AI in POCUS and the advantages and limitations of AI POCUS in different clinical settings. Future research in the field must first establish the diagnostic accuracy of AI POCUS tools and explore their clinical utility through clinical trials.

A radiomics model combining machine learning and neural networks for high-accuracy prediction of cervical lymph node metastasis on ultrasound of head and neck squamous cell carcinoma.

Fukuda M, Eida S, Katayama I, Takagi Y, Sasaki M, Sumi M, Ariji Y

pubmed logopapersJun 1 2025
This study aimed to develop an ultrasound image-based radiomics model for diagnosing cervical lymph node (LN) metastasis in patients with head and neck squamous cell carcinoma (HNSCC) that shows higher accuracy than previous models. A total of 537 LN (260 metastatic and 277 nonmetastatic) from 126 patients (78 men, 48 women, average age 63 years) were enrolled. The multivariate analysis software Prediction One (Sony Network Communications Corporation) was used to create the diagnostic models. Furthermore, three machine learning methods were adopted as comparison approaches. Based on a combination of texture analysis results, clinical information, and ultrasound findings interpretated by specialists, a total of 12 models were created, three for each machine learning method, and their diagnostic performance was compared. The three best models had area under the curve of 0.98. Parameters related to ultrasound findings, such as presence of a hilum, echogenicity, and granular parenchymal echoes, showed particularly high contributions. Other significant contributors were those from texture analysis that indicated the minimum pixel value, number of contiguous pixels with the same echogenicity, and uniformity of gray levels. The radiomics model developed was able to accurately diagnose cervical LN metastasis in HNSCC.

Ultrasound-based radiomics and machine learning for enhanced diagnosis of knee osteoarthritis: Evaluation of diagnostic accuracy, sensitivity, specificity, and predictive value.

Kiso T, Okada Y, Kawata S, Shichiji K, Okumura E, Hatsumi N, Matsuura R, Kaminaga M, Kuwano H, Okumura E

pubmed logopapersJun 1 2025
To evaluate the usefulness of radiomics features extracted from ultrasonographic images in diagnosing and predicting the severity of knee osteoarthritis (OA). In this single-center, prospective, observational study, radiomics features were extracted from standing radiographs and ultrasonographic images of knees of patients aged 40-85 years with primary medial OA and without OA. Analysis was conducted using LIFEx software (version 7.2.n), ANOVA, and LASSO regression. The diagnostic accuracy of three different models, including a statistical model incorporating background factors and machine learning models, was evaluated. Among 491 limbs analyzed, 318 were OA and 173 were non-OA cases. The mean age was 72.7 (±8.7) and 62.6 (±11.3) years in the OA and non-OA groups, respectively. The OA group included 81 (25.5 %) men and 237 (74.5 %) women, whereas the non-OA group included 73 men (42.2 %) and 100 (57.8 %) women. A statistical model using the cutoff value of MORPHOLOGICAL_SurfaceToVolumeRatio (IBSI:2PR5) achieved a specificity of 0.98 and sensitivity of 0.47. Machine learning diagnostic models (Model 2) demonstrated areas under the curve (AUCs) of 0.88 (discriminant analysis) and 0.87 (logistic regression), with sensitivities of 0.80 and 0.81 and specificities of 0.82 and 0.80, respectively. For severity prediction, the statistical model using MORPHOLOGICAL_SurfaceToVolumeRatio (IBSI:2PR5) showed sensitivity and specificity values of 0.78 and 0.86, respectively, whereas machine learning models achieved an AUC of 0.92, sensitivity of 0.81, and specificity of 0.85 for severity prediction. The use of radiomics features in diagnosing knee OA shows potential as a supportive tool for enhancing clinicians' decision-making.

Combining Deep Data-Driven and Physics-Inspired Learning for Shear Wave Speed Estimation in Ultrasound Elastography.

Tehrani AKZ, Schoen S, Candel I, Gu Y, Guo P, Thomenius K, Pierce TT, Wang M, Tadross R, Washburn M, Rivaz H, Samir AE

pubmed logopapersJun 1 2025
The shear wave elastography (SWE) provides quantitative markers for tissue characterization by measuring the shear wave speed (SWS), which reflects tissue stiffness. SWE uses an acoustic radiation force pulse sequence to generate shear waves that propagate laterally through tissue with transient displacements. These waves travel perpendicular to the applied force, and their displacements are tracked using high-frame-rate ultrasound. Estimating the SWS map involves two main steps: speckle tracking and SWS estimation. Speckle tracking calculates particle velocity by measuring RF/IQ data displacement between adjacent firings, while SWS estimation methods typically compare particle velocity profiles of samples that are laterally a few millimeters apart. Deep learning (DL) methods have gained attention for SWS estimation, often relying on supervised training using simulated data. However, these methods may struggle with real-world data, which can differ significantly from the simulated training data, potentially leading to artifacts in the estimated SWS map. To address this challenge, we propose a physics-inspired learning approach that utilizes real data without known SWS values. Our method employs an adaptive unsupervised loss function, allowing the network to train with the real noisy data to minimize the artifacts and improve the robustness. We validate our approach using experimental phantom data and in vivo liver data from two human subjects, demonstrating enhanced accuracy and reliability in SWS estimation compared with conventional and supervised methods. This hybrid approach leverages the strengths of both data-driven and physics-inspired learning, offering a promising solution for more accurate and robust SWS mapping in clinical applications.

From Guidelines to Intelligence: How AI Refines Thyroid Nodule Biopsy Decisions.

Zeng W, He Y, Xu R, Mai W, Chen Y, Li S, Yi W, Ma L, Xiong R, Liu H

pubmed logopapersMay 31 2025
To evaluate the value of combining American College of Radiology (ACR) Thyroid Imaging Reporting and Data System (TI-RADS) with the Demetics ultrasound diagnostic system in reducing the rate of fine-needle aspiration (FNA) biopsies for thyroid nodules. A retrospective study analyzed 548 thyroid nodules from 454 patients, all meeting ACR TI-RADS guidelines (category ≥3 and diameter ≥10 mm) for FNA. Nodule was reclassified using the combined ACR TI-RADS and Demetics system (De TI-RADS), and the biopsy rates were compared. Using ACR TI-RADS alone, the biopsy rate was 70.6% (387/548), with a positive predictive value (PPV) of 52.5% (203/387), an unnecessary biopsy rate of 47.5% (184/387) and a missed diagnosis rate of 11.0% (25/228). Incorporating Demetics reduced the biopsy rate to 48.1% (264/548), the unnecessary biopsy rate to 17.4% (46/265) and the missed diagnosis rate to 4.4% (10/228), while increasing PPV to 82.6% (218/264). All differences between ACR TI-RADS and De TI-RADS were statistically significant (p < 0.05). The integration of ACR TI-RADS with the Demetics system improves nodule risk assessment by enhancing diagnostic and efficiency. This approach reduces unnecessary biopsies and missed diagnoses while increasing PPV, offering a more reliable tool for clinicians and patients.

Discriminating Clear Cell From Non-Clear Cell Renal Cell Carcinoma: A Machine Learning Approach Using Contrast-enhanced Ultrasound Radiomics.

Liang M, Wu S, Ou B, Wu J, Qiu H, Zhao X, Luo B

pubmed logopapersMay 31 2025
The aim of this investigation is to assess the clinical usefulness of a machine learning model using contrast-enhanced ultrasound (CEUS) radiomics in discriminating clear cell renal cell carcinoma (ccRCC) from non-ccRCC. A total of 292 patients with pathologically confirmed RCC subtypes underwent CEUS (development set. n = 231; validation set, n = 61) in a retrospective study. Radiomics features were derived from CEUS images acquired during the cortical and parenchymal phases. Radiomics models were developed using logistic regression (LR), support vector machine, decision tree, naive Bayes, gradient boosting machine, and random forest. The suitable model was identified based on the area under the receiver operating characteristic curve (AUC). Appropriate clinical CEUS features were identified through univariate and multivariate LR analyses to develop a clinical model. By integrating radiomics and clinical CEUS features, a combined model was established. A comprehensive evaluation of the models' performance was conducted. After the reduction and selection process were applied to 2250 radiomics features, the final set of 8 features was considered valuable. Among the models, the LR model had the highest performance on the validation set and showed good robustness. In both the development and validation sets, both the radiomics (AUC, 0.946 and 0.927) and the combined models (AUC, 0.949 and 0.925) outperformed the clinical model (AUC, 0.851 and 0.768), showing higher AUC values (all p < 0.05). The combined model exhibited favorable calibration and clinical benefit. The combined model integrating clinical CEUS and CEUS radiomics features demonstrated good diagnostic performance in discriminating ccRCC from non-ccRCC.
Page 31 of 41404 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.