Sort by:
Page 30 of 38373 results

Eigenhearts: Cardiac diseases classification using eigenfaces approach.

Groun N, Villalba-Orero M, Casado-Martín L, Lara-Pezzi E, Valero E, Le Clainche S, Garicano-Mena J

pubmed logopapersJun 1 2025
In the realm of cardiovascular medicine, medical imaging plays a crucial role in accurately classifying cardiac diseases and making precise diagnoses. However, the integration of data science techniques in this field presents significant challenges, as it requires a large volume of images, while ethical constraints, high costs, and variability in imaging protocols limit data acquisition. As a consequence, it is necessary to investigate different avenues to overcome this challenge. In this contribution, we offer an innovative tool to conquer this limitation. In particular, we delve into the application of a well recognized method known as the eigenfaces approach to classify cardiac diseases. This approach was originally motivated for efficiently representing pictures of faces using principal component analysis, which provides a set of eigenvectors (aka eigenfaces), explaining the variation between face images. Given its effectiveness in face recognition, we sought to evaluate its applicability to more complex medical imaging datasets. In particular, we integrate this approach with convolutional neural networks to classify echocardiography images taken from mice in five distinct cardiac conditions (healthy, diabetic cardiomyopathy, myocardial infarction, obesity and TAC hypertension). The results show a substantial and noteworthy enhancement when employing the singular value decomposition for pre-processing, with classification accuracy increasing by approximately 50%.

Quantifying the Unknowns of Plaque Morphology: The Role of Topological Uncertainty in Coronary Artery Disease.

Singh Y, Hathaway QA, Dinakar K, Shaw LJ, Erickson B, Lopez-Jimenez F, Bhatt DL

pubmed logopapersJun 1 2025
This article aimed to explore topological uncertainty in medical imaging, particularly in assessing coronary artery calcification using artificial intelligence (AI). Topological uncertainty refers to ambiguities in spatial and structural characteristics of medical features, which can impact the interpretation of coronary plaques. The article discusses the challenges of integrating AI with topological considerations and the need for specialized methodologies beyond traditional performance metrics. It highlights advancements in quantifying topological uncertainty, including the use of persistent homology and topological data analysis techniques. The importance of standardization in methodologies and ethical considerations in AI deployment are emphasized. It also outlines various types of uncertainty in topological frameworks for coronary plaques, categorizing them as quantifiable and controllable or quantifiable and not controllable. Future directions include developing AI algorithms that incorporate topological insights, establishing standardized protocols, and exploring ethical implications to revolutionize cardiovascular care through personalized treatment plans guided by sophisticated topological analysis. Recognizing and quantifying topological uncertainty in medical imaging as AI emerges is critical. Exploring topological uncertainty in coronary artery disease will revolutionize cardiovascular care, promising enhanced precision and personalization in diagnostics and treatment for millions affected by cardiovascular diseases.

Assessing the diagnostic accuracy and prognostic utility of artificial intelligence detection and grading of coronary artery calcification on nongated computed tomography (CT) thorax.

Shear B, Graby J, Murphy D, Strong K, Khavandi A, Burnett TA, Charters PFP, Rodrigues JCL

pubmed logopapersJun 1 2025
This study assessed the diagnostic accuracy and prognostic implications of an artificial intelligence (AI) tool for coronary artery calcification (CAC) assessment on nongated, noncontrast thoracic computed tomography (CT). A single-centre retrospective analysis of 75 consecutive patients per age group (<40, 40-49, 50-59, 60-69, 70-79, 80-89, and ≥90 years) undergoing non-gated, non-contrast CT (January-December 2015) was conducted. AI analysis reported CAC presence and generated an Agatston score, and the performance was compared with baseline CT reports and a dedicated radiologist re-review. Interobserver variability between AI and radiologist assessments was measured using Cohen's κ. All-cause mortality was recorded, and its association with AI-detected CAC was tested. A total of 291 patients (mean age: 64 ± 19, 51% female) were included, with 80% (234/291) of AI reports passing radiologist quality assessment. CAC was reported on 7% (17/234) of initial clinical reports, 58% (135/234) on radiologist re-review, and 57% (134/234) by AI analysis. After manual quality assurance (QA) assessment, the AI tool demonstrated high sensitivity (96%), specificity (96%), positive predictive value (95%), and negative predictive value (97%) for CAC detection compared with radiologist re-review. Interobserver agreement was strong for CAC prevalence (κ = 0.92) and moderate for severity grading (κ = 0.60). AI-detected CAC presence and severity predicted all-cause mortality (p < 0.001). The AI tool exhibited feasible analysis potential for non-contrast, non-gated thoracic CTs, offering prognostic insights if integrated into routine practice. Nonetheless, manual quality assessment remains essential. This AI tool represents a potential enhancement to CAC detection and reporting on routine noncardiac chest CT.

DeepValve: The first automatic detection pipeline for the mitral valve in Cardiac Magnetic Resonance imaging.

Monopoli G, Haas D, Singh A, Aabel EW, Ribe M, Castrini AI, Hasselberg NE, Bugge C, Five C, Haugaa K, Forsch N, Thambawita V, Balaban G, Maleckar MM

pubmed logopapersJun 1 2025
Mitral valve (MV) assessment is key to diagnosing valvular disease and to addressing its serious downstream complications. Cardiac magnetic resonance (CMR) has become an essential diagnostic tool in MV disease, offering detailed views of the valve structure and function, and overcoming the limitations of other imaging modalities. Automated detection of the MV leaflets in CMR could enable rapid and precise assessments that enhance diagnostic accuracy. To address this gap, we introduce DeepValve, the first deep learning (DL) pipeline for MV detection using CMR. Within DeepValve, we tested three valve detection models: a keypoint-regression model (UNET-REG), a segmentation model (UNET-SEG) and a hybrid model based on keypoint detection (DSNT-REG). We also propose metrics for evaluating the quality of MV detection, including Procrustes-based metrics (UNET-REG, DSNT-REG) and customized Dice-based metrics (UNET-SEG). We developed and tested our models on a clinical dataset comprising 120 CMR images from patients with confirmed MV disease (mitral valve prolapse and mitral annular disjunction). Our results show that DSNT-REG delivered the best regression performance, accurately locating landmark locations. UNET-SEG achieved satisfactory Dice and customized Dice scores, also accurately predicting valve location and topology. Overall, our work represents a critical first step towards automated MV assessment using DL in CMR and paving the way for improved clinical assessment in MV disease.

P2TC: A Lightweight Pyramid Pooling Transformer-CNN Network for Accurate 3D Whole Heart Segmentation.

Cui H, Wang Y, Zheng F, Li Y, Zhang Y, Xia Y

pubmed logopapersJun 1 2025
Cardiovascular disease is a leading global cause of death, requiring accurate heart segmentation for diagnosis and surgical planning. Deep learning methods have been demonstrated to achieve superior performances in cardiac structures segmentation. However, there are still limitations in 3D whole heart segmentation, such as inadequate spatial context modeling, difficulty in capturing long-distance dependencies, high computational complexity, and limited representation of local high-level semantic information. To tackle the above problems, we propose a lightweight Pyramid Pooling Transformer-CNN (P2TC) network for accurate 3D whole heart segmentation. The proposed architecture comprises a dual encoder-decoder structure with a 3D pyramid pooling Transformer for multi-scale information fusion and a lightweight large-kernel Convolutional Neural Network (CNN) for local feature extraction. The decoder has two branches for precise segmentation and contextual residual handling. The first branch is used to generate segmentation masks for pixel-level classification based on the features extracted by the encoder to achieve accurate segmentation of cardiac structures. The second branch highlights contextual residuals across slices, enabling the network to better handle variations and boundaries. Extensive experimental results on the Multi-Modality Whole Heart Segmentation (MM-WHS) 2017 challenge dataset demonstrate that P2TC outperforms the most advanced methods, achieving the Dice scores of 92.6% and 88.1% in Computed Tomography (CT) and Magnetic Resonance Imaging (MRI) modalities respectively, which surpasses the baseline model by 1.5% and 1.7%, and achieves state-of-the-art segmentation results.

[Applications of artificial intelligence in cardiovascular imaging: advantages, limitations, and future challenges].

Fortuni F, Petrina SM, Nicolosi GL

pubmed logopapersJun 1 2025
Artificial intelligence (AI) is rapidly transforming cardiovascular imaging, offering innovative solutions to enhance diagnostic precision, prognostic accuracy, and therapeutic decision-making. This review explores the role of AI in cardiovascular imaging, highlighting its applications, advantages, limitations, and future challenges. The discussion is structured by imaging modalities, including echocardiography, cardiac and coronary computed tomography, cardiac magnetic resonance, and nuclear cardiology. For each modality, we examine AI's contributions across the patient care continuum: from patient selection and image acquisition to quantitative and qualitative analysis, interpretation support, prognostic stratification, therapeutic guidance, and integration with other clinical data. AI applications demonstrate significant potential to streamline workflows, improve diagnostic accuracy, and provide advanced insights for complex clinical scenarios. However, several limitations must be addressed. Many AI algorithms are developed using data from single, high-expertise centers, raising concerns about their generalizability to routine clinical practice. In some cases, these algorithms may even produce misleading results. Additionally, the "black box" nature of certain AI systems poses challenges for cardiologists, making discrepancies difficult to interpret or rectify. Importantly, AI should be seen as a complementary tool rather than a replacement for cardiologists, designed to expedite routine tasks and allow clinicians to focus on complex cases. Future challenges include fostering clinician involvement in algorithm development and extending AI implementation to peripheral healthcare centers. This approach aims to enhance accessibility, understanding, and applicability of AI in everyday clinical practice, ultimately democratizing its benefits and ensuring equitable integration into healthcare systems.

SAMBV: A fine-tuned SAM with interpolation consistency regularization for semi-supervised bi-ventricle segmentation from cardiac MRI.

Wang Y, Zhou S, Lu K, Wang Y, Zhang L, Liu W, Wang Z

pubmed logopapersJun 1 2025
The SAM (segment anything model) is a foundation model for general purpose image segmentation, however, when it comes to a specific medical application, such as segmentation of both ventricles from the 2D cardiac MRI, the results are not satisfactory. The scarcity of labeled medical image data further increases the difficulty to apply the SAM to medical image processing. To address these challenges, we propose the SAMBV by fine-tuning the SAM for semi-supervised segmentation of bi-ventricle from the 2D cardiac MRI. The SAM is tuned in three aspects, (i) the position and feature adapters are introduced so that the SAM can adapt to bi-ventricle segmentation. (ii) a dual-branch encoder is incorporated to collect missing local feature information in SAM so as to improve bi-ventricle segmentation. (iii) the interpolation consistency regularization (ICR) semi-supervised manner is utilized, allowing the SAMBV to achieve competitive performance with only 40% of the labeled data in the ACDC dataset. Experimental results demonstrate that the proposed SAMBV achieves an average Dice score improvement of 17.6% over the original SAM, raising its performance from 74.49% to 92.09%. Furthermore, the SAMBV outperforms other supervised SAM fine-tuning methods, showing its effectiveness in semi-supervised medical image segmentation tasks. Notably, the proposed method is specifically designed for 2D MRI data.

Automated Coronary Artery Segmentation with 3D PSPNET using Global Processing and Patch Based Methods on CCTA Images.

Chachadi K, Nirmala SR, Netrakar PG

pubmed logopapersJun 1 2025
The prevalence of coronary artery disease (CAD) has become the major cause of death across the world in recent years. The accurate segmentation of coronary artery is important in clinical diagnosis and treatment of coronary artery disease (CAD) such as stenosis detection and plaque analysis. Deep learning techniques have been shown to assist medical experts in diagnosing diseases using biomedical imaging. There are many methods which employ 2D DL models for medical image segmentation. The 2D Pyramid Scene Parsing Neural Network (PSPNet) has potential in this domain but not explored for the segmentation of coronary arteries from 3D Coronary Computed Tomography Angiography (CCTA) images. The contribution of present research work is to propose the modification of 2D PSPNet into 3D PSPNet for segmenting the coronary arteries from 3D CCTA images. The innovative factor is to evaluate the network performance by employing Global processing and Patch based processing methods. The experimental results achieved a Dice Similarity Coefficient (DSC) of 0.76 for Global process method and 0.73 for Patch based method using a subset of 200 images from the ImageCAS dataset.

A systematic review on deep learning-enabled coronary CT angiography for plaque and stenosis quantification and cardiac risk prediction.

Shrivastava P, Kashikar S, Parihar PH, Kasat P, Bhangale P, Shrivastava P

pubmed logopapersJun 1 2025
Coronary artery disease (CAD) is a major worldwide health concern, contributing significantly to the global burden of cardiovascular diseases (CVDs). According to the 2023 World Health Organization (WHO) report, CVDs account for approximately 17.9 million deaths annually. This emphasizies the need for advanced diagnostic tools such as coronary computed tomography angiography (CCTA). The incorporation of deep learning (DL) technologies could significantly improve CCTA analysis by automating the quantification of plaque and stenosis, thus enhancing the precision of cardiac risk assessments. A recent meta-analysis highlights the evolving role of CCTA in patient management, showing that CCTA-guided diagnosis and management reduced adverse cardiac events and improved event-free survival in patients with stable and acute coronary syndromes. An extensive literature search was carried out across various electronic databases, such as MEDLINE, Embase, and the Cochrane Library. This search utilized a specific strategy that included both Medical Subject Headings (MeSH) terms and pertinent keywords. The review adhered to PRISMA guidelines and focused on studies published between 2019 and 2024 that employed deep learning (DL) for coronary computed tomography angiography (CCTA) in patients aged 18 years or older. After implementing specific inclusion and exclusion criteria, a total of 10 articles were selected for systematic evaluation regarding quality and bias. This systematic review included a total of 10 studies, demonstrating the high diagnostic performance and predictive capabilities of various deep learning models compared to different imaging modalities. This analysis highlights the effectiveness of these models in enhancing diagnostic accuracy in imaging techniques. Notably, strong correlations were observed between DL-derived measurements and intravascular ultrasound findings, enhancing clinical decision-making and risk stratification for CAD. Deep learning-enabled CCTA represents a promising advancement in the quantification of coronary plaques and stenosis, facilitating improved cardiac risk prediction and enhancing clinical workflow efficiency. Despite variability in study designs and potential biases, the findings support the integration of DL technologies into routine clinical practice for better patient outcomes in CAD management.

Effect of Deep Learning Image Reconstruction on Image Quality and Pericoronary Fat Attenuation Index.

Mei J, Chen C, Liu R, Ma H

pubmed logopapersJun 1 2025
To compare the image quality and fat attenuation index (FAI) of coronary artery CT angiography (CCTA) under different tube voltages between deep learning image reconstruction (DLIR) and adaptive statistical iterative reconstruction V (ASIR-V). Three hundred one patients who underwent CCTA with automatic tube current modulation were prospectively enrolled and divided into two groups: 120 kV group and low tube voltage group. Images were reconstructed using ASIR-V level 50% (ASIR-V50%) and high-strength DLIR (DLIR-H). In the low tube voltage group, the voltage was selected according to Chinese BMI classification: 70 kV (BMI < 24 kg/m<sup>2</sup>), 80 kV (24 kg/m<sup>2</sup> ≤ BMI < 28 kg/m<sup>2</sup>), 100 kV (BMI ≥ 28 kg/m<sup>2</sup>). At the same tube voltage, the subjective and objective image quality, edge rise distance (ERD), and FAI between different algorithms were compared. Under different tube voltages, we used DLIR-H to compare the differences between subjective, objective image quality, and ERD. Compared with the 120 kV group, the DLIR-H image noise of 70 kV, 80 kV, and 100 kV groups increased by 36%, 25%, and 12%, respectively (all P < 0.001); contrast-to-noise ratio (CNR), subjective score, and ERD were similar (all P > 0.05). In the 70 kV, 80 kV, 100 kV, and 120 kV groups, compared with ASIR-V50%, DLIR-H image noise decreased by 50%, 53%, 47%, and 38-50%, respectively; CNR, subjective score, and FAI value increased significantly (all P < 0.001), ERD decreased. Compared with 120 kV tube voltage, the combination of DLIR-H and low tube voltage maintains image quality. At the same tube voltage, compared with ASIR-V, DLIR-H improves image quality and FAI value.
Page 30 of 38373 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.