Sort by:
Page 3 of 39382 results

Prediction of adverse pathology in prostate cancer using a multimodal deep learning approach based on [<sup>18</sup>F]PSMA-1007 PET/CT and multiparametric MRI.

Lin H, Yao F, Yi X, Yuan Y, Xu J, Chen L, Wang H, Zhuang Y, Lin Q, Xue Y, Yang Y, Pan Z

pubmed logopapersJul 1 2025
Accurate prediction of adverse pathology (AP) in prostate cancer (PCa) patients is crucial for formulating effective treatment strategies. This study aims to develop and evaluate a multimodal deep learning model based on [<sup>18</sup>F]PSMA-1007 PET/CT and multiparametric MRI (mpMRI) to predict the presence of AP, and investigate whether the model that integrates [<sup>18</sup>F]PSMA-1007 PET/CT and mpMRI outperforms the individual PET/CT or mpMRI models in predicting AP. 341 PCa patients who underwent radical prostatectomy (RP) with mpMRI and PET/CT scans were retrospectively analyzed. We generated deep learning signature from mpMRI and PET/CT with a multimodal deep learning model (MPC) based on convolutional neural networks and transformer, which was subsequently incorporated with clinical characteristics to construct an integrated model (MPCC). These models were compared with clinical models and single mpMRI or PET/CT models. The MPCC model showed the best performance in predicting AP (AUC, 0.955 [95% CI: 0.932-0.975]), which is higher than MPC model (AUC, 0.930 [95% CI: 0.901-0.955]). The performance of the MPC model is better than that of single PET/CT (AUC, 0.813 [95% CI: 0.780-0.845]) or mpMRI (AUC, 0.865 [95% CI: 0.829-0.901]). Additionally, MPCC model is also effective in predicting single adverse pathological features. The deep learning model that integrates mpMRI and [<sup>18</sup>F]PSMA-1007 PET/CT enhances the predictive capabilities for the presence of AP in PCa patients. This improvement aids physicians in making informed preoperative decisions, ultimately enhancing patient prognosis.

Diffusion-driven multi-modality medical image fusion.

Qu J, Huang D, Shi Y, Liu J, Tang W

pubmed logopapersJul 1 2025
Multi-modality medical image fusion (MMIF) technology utilizes the complementarity of different modalities to provide more comprehensive diagnostic insights for clinical practice. Existing deep learning-based methods often focus on extracting the primary information from individual modalities while ignoring the correlation of information distribution across different modalities, which leads to insufficient fusion of image details and color information. To address this problem, a diffusion-driven MMIF method is proposed to leverage the information distribution relationship among multi-modality images in the latent space. To better preserve the complementary information from different modalities, a local and global network (LAGN) is suggested. Additionally, a loss strategy is designed to establish robust constraints among diffusion-generated images, original images, and fused images. This strategy supervises the training process and prevents information loss in fused images. The experimental results demonstrate that the proposed method surpasses state-of-the-art image fusion methods in terms of unsupervised metrics on three datasets: MRI/CT, MRI/PET, and MRI/SPECT images. The proposed method successfully captures rich details and color information. Furthermore, 16 doctors and medical students were invited to evaluate the effectiveness of our method in assisting clinical diagnosis and treatment.

Automated quantification of brain PET in PET/CT using deep learning-based CT-to-MR translation: a feasibility study.

Kim D, Choo K, Lee S, Kang S, Yun M, Yang J

pubmed logopapersJul 1 2025
Quantitative analysis of PET images in brain PET/CT relies on MRI-derived regions of interest (ROIs). However, the pairs of PET/CT and MR images are not always available, and their alignment is challenging if their acquisition times differ considerably. To address these problems, this study proposes a deep learning framework for translating CT of PET/CT to synthetic MR images (MR<sub>SYN</sub>) and performing automated quantitative regional analysis using MR<sub>SYN</sub>-derived segmentation. In this retrospective study, 139 subjects who underwent brain [<sup>18</sup>F]FBB PET/CT and T1-weighted MRI were included. A U-Net-like model was trained to translate CT images to MR<sub>SYN</sub>; subsequently, a separate model was trained to segment MR<sub>SYN</sub> into 95 regions. Regional and composite standardised uptake value ratio (SUVr) was calculated in [<sup>18</sup>F]FBB PET images using the acquired ROIs. For evaluation of MR<sub>SYN</sub>, quantitative measurements including structural similarity index measure (SSIM) were employed, while for MR<sub>SYN</sub>-based segmentation evaluation, Dice similarity coefficient (DSC) was calculated. Wilcoxon signed-rank test was performed for SUVrs computed using MR<sub>SYN</sub> and ground-truth MR (MR<sub>GT</sub>). Compared to MR<sub>GT</sub>, the mean SSIM of MR<sub>SYN</sub> was 0.974 ± 0.005. The MR<sub>SYN</sub>-based segmentation achieved a mean DSC of 0.733 across 95 regions. No statistical significance (P > 0.05) was found for SUVr between the ROIs from MR<sub>SYN</sub> and those from MR<sub>GT</sub>, excluding the precuneus. We demonstrated a deep learning framework for automated regional brain analysis in PET/CT with MR<sub>SYN</sub>. Our proposed framework can benefit patients who have difficulties in performing an MRI scan.

Response prediction for neoadjuvant treatment in locally advanced rectal cancer patients-improvement in decision-making: A systematic review.

Boldrini L, Charles-Davies D, Romano A, Mancino M, Nacci I, Tran HE, Bono F, Boccia E, Gambacorta MA, Chiloiro G

pubmed logopapersJul 1 2025
Predicting pathological complete response (pCR) from pre or post-treatment features could be significant in improving the process of making clinical decisions and providing a more personalized treatment approach for better treatment outcomes. However, the lack of external validation of predictive models, missing in several published articles, is a major issue that can potentially limit the reliability and applicability of predictive models in clinical settings. Therefore, this systematic review described different externally validated methods of predicting response to neoadjuvant chemoradiotherapy (nCRT) in locally advanced rectal cancer (LARC) patients and how they could improve clinical decision-making. An extensive search for eligible articles was performed on PubMed, Cochrane, and Scopus between 2018 and 2023, using the keywords: (Response OR outcome) prediction AND (neoadjuvant OR chemoradiotherapy) treatment in 'locally advanced Rectal Cancer'. (i) Studies including patients diagnosed with LARC (T3/4 and N- or any T and N+) by pre-medical imaging and pathological examination or as stated by the author (ii) Standardized nCRT completed. (iii) Treatment with long or short course radiotherapy. (iv) Studies reporting on the prediction of response to nCRT with pathological complete response (pCR) as the primary outcome. (v) Studies reporting external validation results for response prediction. (vi) Regarding language restrictions, only articles in English were accepted. (i) We excluded case report studies, conference abstracts, reviews, studies reporting patients with distant metastases at diagnosis. (ii) Studies reporting response prediction with only internally validated approaches. Three researchers (DC-D, FB, HT) independently reviewed and screened titles and abstracts of all articles retrieved after de-duplication. Possible disagreements were resolved through discussion among the three researchers. If necessary, three other researchers (LB, GC, MG) were consulted to make the final decision. The extraction of data was performed using the CHecklist for critical Appraisal and data extraction for systematic Reviews of prediction Modelling Studies (CHARMS) template and quality assessment was done using the Prediction model Risk Of Bias Assessment Tool (PROBAST). A total of 4547 records were identified from the three databases. After excluding 392 duplicate results, 4155 records underwent title and abstract screening. Three thousand and eight hundred articles were excluded after title and abstract screening and 355 articles were retrieved. Out of the 355 retrieved articles, 51 studies were assessed for eligibility. Nineteen reports were then excluded due to lack of reports on external validation, while 4 were excluded due to lack of evaluation of pCR as the primary outcome. Only Twenty-eight articles were eligible and included in this systematic review. In terms of quality assessment, 89 % of the models had low concerns in the participants domain, while 11 % had an unclear rating. 96 % of the models were of low concern in both the predictors and outcome domains. The overall rating showed high applicability potential of the models with 82 % showing low concern, while 18 % were deemed unclear. Most of the external validated techniques showed promising performances and the potential to be applied in clinical settings, which is a crucial step towards evidence-based medicine. However, more studies focused on the external validations of these models in larger cohorts is necessary to ensure that they can reliably predict outcomes in diverse populations.

MedSAM-CA: A CNN-Augmented ViT with Attention-Enhanced Multi-Scale Fusion for Medical Image Segmentation

Peiting Tian, Xi Chen, Haixia Bi, Fan Li

arxiv logopreprintJun 30 2025
Medical image segmentation plays a crucial role in clinical diagnosis and treatment planning, where accurate boundary delineation is essential for precise lesion localization, organ identification, and quantitative assessment. In recent years, deep learning-based methods have significantly advanced segmentation accuracy. However, two major challenges remain. First, the performance of these methods heavily relies on large-scale annotated datasets, which are often difficult to obtain in medical scenarios due to privacy concerns and high annotation costs. Second, clinically challenging scenarios, such as low contrast in certain imaging modalities and blurry lesion boundaries caused by malignancy, still pose obstacles to precise segmentation. To address these challenges, we propose MedSAM-CA, an architecture-level fine-tuning approach that mitigates reliance on extensive manual annotations by adapting the pretrained foundation model, Medical Segment Anything (MedSAM). MedSAM-CA introduces two key components: the Convolutional Attention-Enhanced Boundary Refinement Network (CBR-Net) and the Attention-Enhanced Feature Fusion Block (Atte-FFB). CBR-Net operates in parallel with the MedSAM encoder to recover boundary information potentially overlooked by long-range attention mechanisms, leveraging hierarchical convolutional processing. Atte-FFB, embedded in the MedSAM decoder, fuses multi-level fine-grained features from skip connections in CBR-Net with global representations upsampled within the decoder to enhance boundary delineation accuracy. Experiments on publicly available datasets covering dermoscopy, CT, and MRI imaging modalities validate the effectiveness of MedSAM-CA. On dermoscopy dataset, MedSAM-CA achieves 94.43% Dice with only 2% of full training data, reaching 97.25% of full-data training performance, demonstrating strong effectiveness in low-resource clinical settings.

VAP-Diffusion: Enriching Descriptions with MLLMs for Enhanced Medical Image Generation

Peng Huang, Junhu Fu, Bowen Guo, Zeju Li, Yuanyuan Wang, Yi Guo

arxiv logopreprintJun 30 2025
As the appearance of medical images is influenced by multiple underlying factors, generative models require rich attribute information beyond labels to produce realistic and diverse images. For instance, generating an image of skin lesion with specific patterns demands descriptions that go beyond diagnosis, such as shape, size, texture, and color. However, such detailed descriptions are not always accessible. To address this, we explore a framework, termed Visual Attribute Prompts (VAP)-Diffusion, to leverage external knowledge from pre-trained Multi-modal Large Language Models (MLLMs) to improve the quality and diversity of medical image generation. First, to derive descriptions from MLLMs without hallucination, we design a series of prompts following Chain-of-Thoughts for common medical imaging tasks, including dermatologic, colorectal, and chest X-ray images. Generated descriptions are utilized during training and stored across different categories. During testing, descriptions are randomly retrieved from the corresponding category for inference. Moreover, to make the generator robust to unseen combination of descriptions at the test time, we propose a Prototype Condition Mechanism that restricts test embeddings to be similar to those from training. Experiments on three common types of medical imaging across four datasets verify the effectiveness of VAP-Diffusion.

Exposing and Mitigating Calibration Biases and Demographic Unfairness in MLLM Few-Shot In-Context Learning for Medical Image Classification

Xing Shen, Justin Szeto, Mingyang Li, Hengguan Huang, Tal Arbel

arxiv logopreprintJun 29 2025
Multimodal large language models (MLLMs) have enormous potential to perform few-shot in-context learning in the context of medical image analysis. However, safe deployment of these models into real-world clinical practice requires an in-depth analysis of the accuracies of their predictions, and their associated calibration errors, particularly across different demographic subgroups. In this work, we present the first investigation into the calibration biases and demographic unfairness of MLLMs' predictions and confidence scores in few-shot in-context learning for medical image classification. We introduce CALIN, an inference-time calibration method designed to mitigate the associated biases. Specifically, CALIN estimates the amount of calibration needed, represented by calibration matrices, using a bi-level procedure: progressing from the population level to the subgroup level prior to inference. It then applies this estimation to calibrate the predicted confidence scores during inference. Experimental results on three medical imaging datasets: PAPILA for fundus image classification, HAM10000 for skin cancer classification, and MIMIC-CXR for chest X-ray classification demonstrate CALIN's effectiveness at ensuring fair confidence calibration in its prediction, while improving its overall prediction accuracies and exhibiting minimum fairness-utility trade-off.

Frequency-enhanced Multi-granularity Context Network for Efficient Vertebrae Segmentation

Jian Shi, Tianqi You, Pingping Zhang, Hongli Zhang, Rui Xu, Haojie Li

arxiv logopreprintJun 29 2025
Automated and accurate segmentation of individual vertebra in 3D CT and MRI images is essential for various clinical applications. Due to the limitations of current imaging techniques and the complexity of spinal structures, existing methods still struggle with reducing the impact of image blurring and distinguishing similar vertebrae. To alleviate these issues, we introduce a Frequency-enhanced Multi-granularity Context Network (FMC-Net) to improve the accuracy of vertebrae segmentation. Specifically, we first apply wavelet transform for lossless downsampling to reduce the feature distortion in blurred images. The decomposed high and low-frequency components are then processed separately. For the high-frequency components, we apply a High-frequency Feature Refinement (HFR) to amplify the prominence of key features and filter out noises, restoring fine-grained details in blurred images. For the low-frequency components, we use a Multi-granularity State Space Model (MG-SSM) to aggregate feature representations with different receptive fields, extracting spatially-varying contexts while capturing long-range dependencies with linear complexity. The utilization of multi-granularity contexts is essential for distinguishing similar vertebrae and improving segmentation accuracy. Extensive experiments demonstrate that our method outperforms state-of-the-art approaches on both CT and MRI vertebrae segmentation datasets. The source code is publicly available at https://github.com/anaanaa/FMCNet.

Inpainting is All You Need: A Diffusion-based Augmentation Method for Semi-supervised Medical Image Segmentation

Xinrong Hu, Yiyu Shi

arxiv logopreprintJun 28 2025
Collecting pixel-level labels for medical datasets can be a laborious and expensive process, and enhancing segmentation performance with a scarcity of labeled data is a crucial challenge. This work introduces AugPaint, a data augmentation framework that utilizes inpainting to generate image-label pairs from limited labeled data. AugPaint leverages latent diffusion models, known for their ability to generate high-quality in-domain images with low overhead, and adapts the sampling process for the inpainting task without need for retraining. Specifically, given a pair of image and label mask, we crop the area labeled with the foreground and condition on it during reversed denoising process for every noise level. Masked background area would gradually be filled in, and all generated images are paired with the label mask. This approach ensures the accuracy of match between synthetic images and label masks, setting it apart from existing dataset generation methods. The generated images serve as valuable supervision for training downstream segmentation models, effectively addressing the challenge of limited annotations. We conducted extensive evaluations of our data augmentation method on four public medical image segmentation datasets, including CT, MRI, and skin imaging. Results across all datasets demonstrate that AugPaint outperforms state-of-the-art label-efficient methodologies, significantly improving segmentation performance.

Causality-Adjusted Data Augmentation for Domain Continual Medical Image Segmentation.

Zhu Z, Dong Q, Luo G, Wang W, Dong S, Wang K, Tian Y, Wang G, Li S

pubmed logopapersJun 27 2025
In domain continual medical image segmentation, distillation-based methods mitigate catastrophic forgetting by continuously reviewing old knowledge. However, these approaches often exhibit biases towards both new and old knowledge simultaneously due to confounding factors, which can undermine segmentation performance. To address these biases, we propose the Causality-Adjusted Data Augmentation (CauAug) framework, introducing a novel causal intervention strategy called the Texture-Domain Adjustment Hybrid-Scheme (TDAHS) alongside two causality-targeted data augmentation approaches: the Cross Kernel Network (CKNet) and the Fourier Transformer Generator (FTGen). (1) TDAHS establishes a domain-continual causal model that accounts for two types of knowledge biases by identifying irrelevant local textures (L) and domain-specific features (D) as confounders. It introduces a hybrid causal intervention that combines traditional confounder elimination with a proposed replacement approach to better adapt to domain shifts, thereby promoting causal segmentation. (2) CKNet eliminates confounder L to reduce biases in new knowledge absorption. It decreases reliance on local textures in input images, forcing the model to focus on relevant anatomical structures and thus improving generalization. (3) FTGen causally intervenes on confounder D by selectively replacing it to alleviate biases that impact old knowledge retention. It restores domain-specific features in images, aiding in the comprehensive distillation of old knowledge. Our experiments show that CauAug significantly mitigates catastrophic forgetting and surpasses existing methods in various medical image segmentation tasks. The implementation code is publicly available at: https://github.com/PerceptionComputingLab/CauAug_DCMIS.
Page 3 of 39382 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.