Sort by:
Page 3 of 25249 results

Deep Learning-Based Signal Amplification of T1-Weighted Single-Dose Images Improves Metastasis Detection in Brain MRI.

Haase R, Pinetz T, Kobler E, Bendella Z, Zülow S, Schievelkamp AH, Schmeel FC, Panahabadi S, Stylianou AM, Paech D, Foltyn-Dumitru M, Wagner V, Schlamp K, Heussel G, Holtkamp M, Heussel CP, Vahlensieck M, Luetkens JA, Schlemmer HP, Haubold J, Radbruch A, Effland A, Deuschl C, Deike K

pubmed logopapersAug 1 2025
Double-dose contrast-enhanced brain imaging improves tumor delineation and detection of occult metastases but is limited by concerns about gadolinium-based contrast agents' effects on patients and the environment. The purpose of this study was to test the benefit of a deep learning-based contrast signal amplification in true single-dose T1-weighted (T-SD) images creating artificial double-dose (A-DD) images for metastasis detection in brain magnetic resonance imaging. In this prospective, multicenter study, a deep learning-based method originally trained on noncontrast, low-dose, and T-SD brain images was applied to T-SD images of 30 participants (mean age ± SD, 58.5 ± 11.8 years; 23 women) acquired externally between November 2022 and June 2023. Four readers with different levels of experience independently reviewed T-SD and A-DD images for metastases with 4 weeks between readings. A reference reader reviewed additionally acquired true double-dose images to determine any metastases present. Performances were compared using Mid-p McNemar tests for sensitivity and Wilcoxon signed rank tests for false-positive findings. All readers found more metastases using A-DD images. The 2 experienced neuroradiologists achieved the same level of sensitivity using T-SD images (62 of 91 metastases, 68.1%). While the increase in sensitivity using A-DD images was only descriptive for 1 of them (A-DD: 65 of 91 metastases, +3.3%, P = 0.424), the second neuroradiologist benefited significantly with a sensitivity increase of 12.1% (73 of 91 metastases, P = 0.008). The 2 less experienced readers (1 resident and 1 fellow) both found significantly more metastases on A-DD images (resident, T-SD: 61.5%, A-DD: 68.1%, P = 0.039; fellow, T-SD: 58.2%, A-DD: 70.3%, P = 0.008). They were therefore able to use A-DD images to increase their sensitivity to the neuroradiologists' initial level on regular T-SD images. False-positive findings did not differ significantly between sequences. However, readers showed descriptively more false-positive findings on A-DD images. The benefit in sensitivity particularly applied to metastases ≤5 mm (5.7%-17.3% increase in sensitivity). A-DD images can improve the detectability of brain metastases without a significant loss of precision and could therefore represent a potentially valuable addition to regular single-dose brain imaging.

First comparison between artificial intelligence-guided coronary computed tomography angiography versus single-photon emission computed tomography testing for ischemia in clinical practice.

Cho GW, Sayed S, D'Costa Z, Karlsberg DW, Karlsberg RP

pubmed logopapersAug 1 2025
Noninvasive cardiac testing with coronary computed tomography angiography (CCTA) and single-photon emission computed tomography (SPECT) are becoming alternatives to invasive angiography for the evaluation of obstructive coronary artery disease. We aimed to evaluate whether a novel artificial intelligence (AI)-assisted CCTA program is comparable to SPECT imaging for ischemic testing. CCTA images were analyzed using an artificial intelligence convolutional neural network machine-learning-based model, atherosclerosis imaging-quantitative computed tomography (AI-QCT) ISCHEMIA . A total of 183 patients (75 females and 108 males, with an average age of 60.8 years ± 12.3 years) were selected. All patients underwent AI-QCT ISCHEMIA -augmented CCTA, with 60 undergoing concurrent SPECT and 16 having invasive coronary angiograms. Eight studies were excluded from analysis due to incomplete data or coronary anomalies.  A total of 175 patients (95%) had CCTA performed, deemed acceptable for AI-QCT ISCHEMIA interpretation. Compared to invasive angiography, AI-QCT ISCHEMIA -driven CCTA showed a sensitivity of 75% and specificity of 70% for predicting coronary ischemia, versus 70% and 53%, respectively for SPECT. The negative predictive value was high for female patients when using AI-QCT ISCHEMIA compared to SPECT (91% vs. 68%, P  = 0.042). Area under the receiver operating characteristic curves were similar between both modalities (0.81 for AI-CCTA, 0.75 for SPECT, P  = 0.526). When comparing both modalities, the correlation coefficient was r  = 0.71 ( P  < 0.04). AI-powered CCTA is a viable alternative to SPECT for detecting myocardial ischemia in patients with low- to intermediate-risk coronary artery disease, with significant positive and negative correlation in results. For patients who underwent confirmatory invasive angiography, the results of AI-CCTA and SPECT imaging were comparable. Future research focusing on prospective studies involving larger and more diverse patient populations is warranted to further investigate the benefits offered by AI-driven CCTA.

High-grade glioma: combined use of 5-aminolevulinic acid and intraoperative ultrasound for resection and a predictor algorithm for detection.

Aibar-Durán JÁ, Mirapeix RM, Gallardo Alcañiz A, Salgado-López L, Freixer-Palau B, Casitas Hernando V, Hernández FM, de Quintana-Schmidt C

pubmed logopapersAug 1 2025
The primary goal in neuro-oncology is the maximally safe resection of high-grade glioma (HGG). A more extensive resection improves both overall and disease-free survival, while a complication-free surgery enables better tolerance to adjuvant therapies such as chemotherapy and radiotherapy. Techniques such as 5-aminolevulinic acid (5-ALA) fluorescence and intraoperative ultrasound (ioUS) are valuable for safe resection and cost-effective. However, the benefits of combining these techniques remain undocumented. The aim of this study was to investigate outcomes when combining 5-ALA and ioUS. From January 2019 to January 2024, 72 patients (mean age 62.2 years, 62.5% male) underwent HGG resection at a single hospital. Tumor histology included glioblastoma (90.3%), grade IV astrocytoma (4.1%), grade III astrocytoma (2.8%), and grade III oligodendroglioma (2.8%). Tumor resection was performed under natural light, followed by using 5-ALA and ioUS to detect residual tumor. Biopsies from the surgical bed were analyzed for tumor presence and categorized based on 5-ALA and ioUS results. Results of 5-ALA and ioUS were classified into positive, weak/doubtful, or negative. Histological findings of the biopsies were categorized into solid tumor, infiltration, or no tumor. Sensitivity, specificity, and predictive values for both techniques, separately and combined, were calculated. A machine learning algorithm (HGGPredictor) was developed to predict tumor presence in biopsies. The overall sensitivities of 5-ALA and ioUS were 84.9% and 76%, with specificities of 57.8% and 84.5%, respectively. The combination of both methods in a positive/positive scenario yielded the highest performance, achieving a sensitivity of 91% and specificity of 86%. The positive/doubtful combination followed, with sensitivity of 67.9% and specificity of 95.2%. Area under the curve analysis indicated superior performance when both techniques were combined, in comparison to each method used individually. Additionally, the HGGPredictor tool effectively estimated the quantity of tumor cells in surgical margins. Combining 5-ALA and ioUS enhanced diagnostic accuracy for HGG resection, suggesting a new surgical standard. An intraoperative predictive algorithm could further automate decision-making.

Keyword-based AI assistance in the generation of radiology reports: A pilot study.

Dong F, Nie S, Chen M, Xu F, Li Q

pubmed logopapersAug 1 2025
Radiology reporting is a time-intensive process, and artificial intelligence (AI) shows potential for textual processing in radiology reporting. In this study, we proposed a keyword-based AI-assisted radiology reporting paradigm and evaluated its potential for clinical implementation. Using MRI data from 100 patients with intracranial tumors, two radiology residents independently wrote both a routine complete report (routine report) and a keyword report for each patient. Based on the keyword reports and a designed prompt, AI-assisted reports were generated (AI-generated reports). The results demonstrated median reporting time reduction ratios of 27.1% and 28.8% (mean, 28.0%) for the two residents, with no significant difference in quality scores between AI-generated and routine reports (p > 0.50). AI-generated reports showed primary diagnosis accuracies of 68.0% (Resident 1) and 76.0% (Resident 2) (mean, 72.0%). These findings suggest that the keyword-based AI-assisted reporting paradigm exhibits significant potential for clinical translation.

Deep Learning Reconstruction Combined With Conventional Acceleration Improves Image Quality of 3 T Brain MRI and Does Not Impact Quantitative Diffusion Metrics.

Wilpert C, Russe MF, Weiss J, Voss C, Rau S, Strecker R, Reisert M, Bedin R, Urbach H, Zaitsev M, Bamberg F, Rau A

pubmed logopapersAug 1 2025
Deep learning reconstruction of magnetic resonance imaging (MRI) allows to either improve image quality of accelerated sequences or to generate high-resolution data. We evaluated the interaction of conventional acceleration and Deep Resolve Boost (DRB)-based reconstruction techniques of a single-shot echo-planar imaging (ssEPI) diffusion-weighted imaging (DWI) on image quality features in cerebral 3 T brain MRI and compared it with a state-of-the-art DWI sequence. In this prospective study, 24 patients received a standard of care ssEPI DWI and 5 additional adapted ssEPI DWI sequences, 3 of those with DRB reconstruction. Qualitative analysis encompassed rating of image quality, noise, sharpness, and artifacts. Quantitative analysis compared apparent diffusion coefficient (ADC) values region-wise between the different DWI sequences. Intraclass correlations, paired sampled t test, Wilcoxon signed rank test, and weighted Cohen κ were used. Compared with the reference standard, the acquisition time was significantly improved in accelerated DWI from 75 seconds up to 50% (39 seconds; P < 0.001). All tested DRB-reconstructed sequences showed significantly improved image quality, sharpness, and reduced noise ( P < 0.001). Highest image quality was observed for the combination of conventional acceleration and DL reconstruction. In singular slices, more artifacts were observed for DRB-reconstructed sequences ( P < 0.001). While in general high consistency was found between ADC values, increasing differences in ADC values were noted with increasing acceleration and application of DRB. Falsely pathological ADCs were rarely observed near frontal poles and optic chiasm attributable to susceptibility-related artifacts due to adjacent sinuses. In this comparative study, we found that the combination of conventional acceleration and DRB reconstruction improves image quality and enables faster acquisition of ssEPI DWI. Nevertheless, a tradeoff between increased acceleration with risk of stronger artifacts and high-resolution with longer acquisition time needs to be considered, especially for application in cerebral MRI.

The retina as a window into detecting subclinical cardiovascular disease in type 2 diabetes.

Alatrany AS, Lakhani K, Cowley AC, Yeo JL, Dattani A, Ayton SL, Deshpande A, Graham-Brown MPM, Davies MJ, Khunti K, Yates T, Sellers SL, Zhou H, Brady EM, Arnold JR, Deane J, McLean RJ, Proudlock FA, McCann GP, Gulsin GS

pubmed logopapersJul 31 2025
Individuals with Type 2 Diabetes (T2D) are at high risk of subclinical cardiovascular disease (CVD), potentially detectable through retinal alterations. In this single-centre, prospective cohort study, 255 asymptomatic adults with T2D and no prior history of CVD underwent echocardiography, non-contrast coronary computed tomography and cardiovascular magnetic resonance. Retinal photographs were evaluated for diabetic retinopathy grade and microvascular geometric characteristics using deep learning (DL) tools. Associations with cardiac imaging markers of subclinical CVD were explored. Of the participants (aged 64 ± 7 years, 62% males); 200 (78%) had no diabetic retinopathy and 55 (22%) had mild background retinopathy. Groups were well-matched for age, sex, ethnicity, CV risk factors, urine microalbuminuria, and serum natriuretic peptide and high-sensitivity troponin levels. Presence of retinopathy was associated with a greater burden of coronary atherosclerosis (coronary artery calcium score ≥ 100; OR 2.63; 95% CI 1.29–5.36; <i>P</i> = 0.008), more concentric left ventricular remodelling (OR 3.11; 95% CI 1.50–6.45; <i>P</i> = 0.002), and worse global longitudinal strain (OR 2.32; 95% CI 1.18–4.59; <i>P</i> = 0.015), independent of key co-variables. Early diabetic retinopathy is associated with a high burden of coronary atherosclerosis and markers of early heart failure. Routine diabetic eye screening may serve as an effective alternative to currently advocated screening tests for detecting subclinical CVD in T2D, presenting opportunities for earlier detection and intervention. The online version contains supplementary material available at 10.1038/s41598-025-13468-4.

Impact of AI assistance on radiologist interpretation of knee MRI.

Herpe G, Vesoul T, Zille P, Pluot E, Guillin R, Rizk B, Ardon R, Adam C, d'Assignies G, Gondim Teixeira PA

pubmed logopapersJul 31 2025
Knee injuries frequently require Magnetic Resonance Imaging (MRI) evaluation, increasing radiologists' workload. This study evaluates the impact of a Knee AI assistant on radiologists' diagnostic accuracy and efficiency in detecting anterior cruciate ligament (ACL), meniscus, cartilage, and medial collateral ligament (MCL) lesions on knee MRI exams. This retrospective reader study was conducted from January 2024 to April 2024. Knee MRI studies were evaluated with and without AI assistance by six radiologists with between 2 and 10 years of experience in musculoskeletal imaging in two sessions, 1 month apart. The AI algorithm was trained on 23,074 MRI studies separate from the study dataset and tested on various knee structures, including ACL, MCL, menisci, and cartilage. The reference standard was established by the consensus of three expert MSK radiologists. Statistical analysis included sensitivity, specificity, accuracy, and Fleiss' Kappa. The study dataset involved 165 knee MRIs (89 males, 76 females; mean age, 42.3 ± 15.7 years). AI assistance improved sensitivity from 81% (134/165, 95% CI = [79.7, 83.3]) to 86%(142/165, 95% CI = [84.2, 87.5]) (p < 0.001), accuracy from 86% (142/165, 95% CI = [85.4, 86.9]) to 91%(150/165, 95% CI = [90.7, 92.1]) (p < 0.001), and specificity from 88% (145/165, 95% CI = [87.1, 88.5]) to 93% (153/165, 95% CI = [92.7, 93.8]) (p < 0.001). Sensitivity and accuracy improvements were observed across all knee structures with varied statistical significance ranging from < 0.001 to 0.28. The Fleiss' Kappa values among readers increased from 54% (95% CI = [53.0, 55.3]) to 78% (95% CI = [76.6, 79.0]) (p < 0.001) post-AI integration. The integration of AI improved diagnostic accuracy, efficiency, and inter-reader agreement in knee MRI interpretation, highlighting the value of this approach in clinical practice. Question Can artificial intelligence (AI) assistance improve the diagnostic accuracy and efficiency of radiologists in detecting main lesions anterior cruciate ligament, meniscus, cartilage, and medial collateral ligament lesions in knee MRI? Findings AI assistance in knee MRI interpretation increased radiologists' sensitivity from 81 to 86% and accuracy from 86 to 91% for detecting knee lesions while improving inter-reader agreement (p < 0.001). Clinical relevance AI-assisted knee MRI interpretation enhances diagnostic precision and consistency among radiologists, potentially leading to more accurate injury detection, improved patient outcomes, and reduced diagnostic variability in musculoskeletal imaging.

Detection of large vessel occlusion using artificial intelligence tools: A systematic review and meta-analysis.

Dantas J, Barros G, Mutarelli A, Dagostin C, Romeiro P, Almirón G, Felix N, Pinheiro A, Bannach MA

pubmed logopapersJul 30 2025
Large vessel occlusion (LVO) accounts for a third of all ischemic strokes. Artificial intelligence (AI) has shown good accuracy in identifying LVOs on computed tomography angiograms (CTA). We sought to analyze whether AI-adjudicated CTA improves workflow times and clinical outcomes in patients with confirmed LVOs. We systematically searched PubMed, Embase, and Web of Science for studies comparing initial radiological assessment assisted by AI softwares versus standard assessment of patients with acute LVO strokes. Results were pooled using a random-effects model as mean differences for continuous outcomes or odds ratio (OR) for dichotomous outcomes, along with 95% confidence intervals (CI). We included 9 studies comprising 1,270 patients, of whom 671 (52.8%) had AI-assisted radiological assessment. AI consistently improved treatment times when compared to standard assessment, as evidenced by a mean reduction of 20.55 minutes in door-to-groin time (95% CI -36.69 to -4.42 minutes; p<0.01) and a reduction of 14.99 minutes in CTA to reperfusion (95% CI -28.45 to -1.53 minutes; p=0.03). Functional independence, defined as a modified Rankin scale 0-2, occurred at similar rates in the AI-supported group and with the standard workflow (OR 1.27; 95% CI 0.92 to 1.76; p=0.14), as did mortality (OR 0.71; 95% CI 0.27 to 1.88; p=0.49). The incorporation of AI softwares for LVO detection in acute ischemic stroke enhanced workflow efficiency and was associated with decreased time to treatment. However, AI did not improve clinical outcomes as compared with standard assessment.

Risk inventory and mitigation actions for AI in medical imaging-a qualitative study of implementing standalone AI for screening mammography.

Gerigoorian A, Kloub M, Dembrower K, Engwall M, Strand F

pubmed logopapersJul 30 2025
Recent prospective studies have shown that AI may be integrated in double-reader settings to increase cancer detection. The ScreenTrustCAD study was conducted at the breast radiology department at the Capio S:t Göran Hospital where AI is now implemented in clinical practice. This study reports on how the hospital prepared by exploring risks from an enterprise risk management perspective, i.e., applying a holistic and proactive perspective, and developed risk mitigation actions. The study was conducted as an integral part of the preparations before implementing AI in a breast imaging department. Collaborative ideation sessions were conducted with personnel at the hospital, either directly or indirectly involved with AI, to identify risks. Two external experts with competencies in cybersecurity, machine learning, and the ethical aspects of AI, were interviewed as a complement. The risks identified were analyzed according to an Enterprise Risk Management framework, adopted for healthcare, that assumes risks to be emerging from eight different domains. Finally, appropriate risk mitigation actions were identified and discussed. Twenty-three risks were identified covering seven of eight risk domains, in turn generating 51 suggested risk mitigation actions. Not only does the study indicate the emergence of patient safety risks, but it also shows that there are operational, strategic, financial, human capital, legal, and technological risks. The risks with most suggested mitigation actions were ‘Radiographers unable to answer difficult questions from patients’, ‘Increased risk that patient-reported symptoms are missed by the single radiologist’, ‘Increased pressure on the single reader knowing they are the only radiologist to catch a mistake by AI’, and ‘The performance of the AI algorithm might deteriorate’. Before a clinical integration of AI, hospitals should expand, identify, and address risks beyond immediate patient safety by applying comprehensive and proactive risk management. The online version contains supplementary material available at 10.1186/s12913-025-13176-9.

Development and validation of a cranial ultrasound imaging-based deep learning model for periventricular-intraventricular haemorrhage detection and grading: a two-centre study.

Peng Y, Hu Z, Wen M, Deng Y, Zhao D, Yu Y, Liang W, Dai X, Wang Y

pubmed logopapersJul 29 2025
Periventricular-intraventricular haemorrhage (IVH) is the most prevalent type of neonatal intracranial haemorrhage. It is especially threatening to preterm infants, in whom it is associated with significant morbidity and mortality. Cranial ultrasound has become an important means of screening periventricular IVH in infants. The integration of artificial intelligence with neonatal ultrasound is promising for enhancing diagnostic accuracy, reducing physician workload, and consequently improving periventricular IVH outcomes. The study investigated whether deep learning-based analysis of the cranial ultrasound images of infants could detect and grade periventricular IVH. This multicentre observational study included 1,060 cases and healthy controls from two hospitals. The retrospective modelling dataset encompassed 773 participants from January 2020 to July 2023, while the prospective two-centre validation dataset included 287 participants from August 2023 to January 2024. The periventricular IVH net model, a deep learning model incorporating the convolutional block attention module mechanism, was developed. The model's effectiveness was assessed by randomly dividing the retrospective data into training and validation sets, followed by independent validation with the prospective two-centre data. To evaluate the model, we measured its recall, precision, accuracy, F1-score, and area under the curve (AUC). The regions of interest (ROI) that influenced the detection by the deep learning model were visualised in significance maps, and the t-distributed stochastic neighbour embedding (t-SNE) algorithm was used to visualise the clustering of model detection parameters. The final retrospective dataset included 773 participants (mean (standard deviation (SD)) gestational age, 32.7 (4.69) weeks; mean (SD) weight, 1,862.60 (855.49) g). For the retrospective data, the model's AUC was 0.99 (95% confidence interval (CI), 0.98-0.99), precision was 0.92 (0.89-0.95), recall was 0.93 (0.89-0.95), and F1-score was 0.93 (0.90-0.95). For the prospective two-centre validation data, the model's AUC was 0.961 (95% CI, 0.94-0.98) and accuracy was 0.89 (95% CI, 0.86-0.92). The two-centre prospective validation results of the periventricular IVH net model demonstrated its tremendous potential for paediatric clinical applications. Combining artificial intelligence with paediatric ultrasound can enhance the accuracy and efficiency of periventricular IVH diagnosis, especially in primary hospitals or community hospitals.
Page 3 of 25249 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.