Sort by:
Page 29 of 92919 results

The role of neuro-imaging in multiple system atrophy.

Krismer F, Seppi K, Poewe W

pubmed logopapersJul 12 2025
Neuroimaging plays a crucial role in diagnosing multiple system atrophy and monitoring progressive neurodegeneration in this fatal disease. Advanced MRI techniques and post-processing methods have demonstrated significant volume loss and microstructural changes in brain regions well known to be affected by MSA pathology. These observations can be exploited to support the differential diagnosis of MSA distinguishing it from Parkinson's disease and progressive supranuclear palsy with high sensitivity and specificity. Longitudinal studies reveal aggressive neurodegeneration in MSA, with notable atrophy rates in the cerebellum, pons, and putamen. Radiotracer imaging using PET and SPECT has shown characteristic disease-related patterns, aiding in differential diagnosis and tracking disease progression. Future research should focus on early diagnosis, particularly in prodromal stages, and the development of reliable biomarkers for clinical trials. Combining different neuroimaging modalities and machine learning algorithms can enhance diagnostic precision and provide a comprehensive understanding of MSA pathology.

AI-powered disease progression prediction in multiple sclerosis using magnetic resonance imaging: a systematic review and meta-analysis.

Houshi S, Khodakarami Z, Shaygannejad A, Khosravi F, Shaygannejad V

pubmed logopapersJul 12 2025
Disability progression despite disease-modifying therapy remains a major challenge in multiple sclerosis (MS). Artificial intelligence (AI) models exploiting magnetic resonance imaging (MRI) promise personalized prognostication, yet their real-world accuracy is uncertain. To systematically review and meta-analyze MRI-based AI studies predicting future disability progression in MS. Five databases were searched from inception to 17 May 2025 following PRISMA. Eligible studies used MRI in an AI model to forecast changes in the Expanded Disability Status Scale (EDSS) or equivalent metrics. Two reviewers conducted study selection, data extraction, and QUADAS-2 assessment. Random-effects meta-analysis was applied when ≥3 studies reported compatible regression statistics. Twenty-one studies with 12,252 MS patients met inclusion criteria. Five used regression on continuous EDSS, fourteen classification, one time-to-event, and one both. Conventional machine learning predominated (57%), and deep learning (38%). Median classification area under the curve (AUC) was 0.78 (range 0.57-0.86); median regression root-mean-square-error (RMSE) 1.08 EDSS points. Pooled RMSE across regression studies was 1.31 (95% CI 1.02-1.60; I<sup>2</sup> = 95%). Deep learning conferred only marginal, non-significant gains over classical algorithms. External validation appeared in six studies; calibration, decision-curve analysis and code releases were seldom reported. QUADAS-2 indicated generally low patient-selection bias but frequent index-test concerns. MRI-driven AI models predict MS disability progression with moderate accuracy, but error margins that exceed one EDSS point limit individual-level utility. Harmonized endpoints, larger multicenter cohorts, rigorous external validation, and prospective clinician-in-the-loop trials are essential before routine clinical adoption.

Accelerated brain magnetic resonance imaging with deep learning reconstruction: a comparative study on image quality in pediatric neuroimaging.

Choi JW, Cho YJ, Lee SB, Lee S, Hwang JY, Choi YH, Cheon JE, Lee J

pubmed logopapersJul 12 2025
Magnetic resonance imaging (MRI) is crucial in pediatric radiology; however, the prolonged scan time is a major drawback that often requires sedation. Deep learning reconstruction (DLR) is a promising method for accelerating MRI acquisition. To evaluate the clinical feasibility of accelerated brain MRI with DLR in pediatric neuroimaging, focusing on image quality compared to conventional MRI. In this retrospective study, 116 pediatric participants (mean age 7.9 ± 5.4 years) underwent routine brain MRI with three reconstruction methods: conventional MRI without DLR (C-MRI), conventional MRI with DLR (DLC-MRI), and accelerated MRI with DLR (DLA-MRI). Two pediatric radiologists independently assessed the overall image quality, sharpness, artifacts, noise, and lesion conspicuity. Quantitative image analysis included the measurement of image noise and coefficient of variation (CoV). DLA-MRI reduced the scan time by 43% compared with C-MRI. Compared with C-MRI, DLA-MRI demonstrated higher scores for overall image quality, noise, and artifacts, as well as similar or higher scores for lesion conspicuity, but similar or lower scores for sharpness. DLC-MRI demonstrated the highest scores for all the parameters. Despite variations in image quality and lesion conspicuity, the lesion detection rates were 100% across all three reconstructions. Quantitative analysis revealed lower noise and CoV for DLA-MRI than those for C-MRI. Interobserver agreement was substantial to almost perfect (weighted Cohen's kappa = 0.72-0.97). DLR enabled faster MRI with improved image quality compared with conventional MRI, highlighting its potential to address prolonged MRI scan times in pediatric neuroimaging and optimize clinical workflows.

Accurate and real-time brain tumour detection and classification using optimized YOLOv5 architecture.

Saranya M, Praveena R

pubmed logopapersJul 12 2025
The brain tumours originate in the brain or its surrounding structures, such as the pituitary and pineal glands, and can be benign or malignant. While benign tumours may grow into neighbouring tissues, metastatic tumours occur when cancer from other organs spreads to the brain. This is because identification and staging of such tumours are critical because basically all aspects involving a patient's disease entail accurate diagnosis as well as the staging of the tumour. Image segmentation is incredibly valuable to medical imaging since it can make possible to simulate surgical operations, diseases diagnosis, anatomical and pathologic analysis. This study performs the prediction and classification of brain tumours present in MRI, a combined classification and localization framework model is proposed connecting Fully Convolutional Neural Network (FCNN) and You Only Look Once version 5 (YOLOv5). The FCNN model is designed to classify images into four categories: benign - glial, adenomas and pituitary related, and meningeal. It utilizes a derivative of Root Mean Square Propagation (RMSProp)optimization to boost the classification rate, based upon which the performance was evaluated with the standard measures that are precision, recall, F1 coefficient, specificity and accuracy. Subsequently, the YOLOv5 architectural design for more accurate detection of tumours is incorporated, with the subsequent use of FCNN for creation of the segmentation's masks of the tumours. Thus, the analysis proves that the suggested approach has more accuracy than the existing system with 98.80% average accuracy in the identification and categorization of brain tumour. This integration of detection and segmentation models presents one of the most effective techniques for enhancing the diagnostic performance of the system to add value within the medical imaging field. On the basis of these findings, it becomes possible to conclude that the advancements in the deep learning structures could apparently improve the tumour diagnosis while contributing to the finetuning of the clinical management.

Generalizable 7T T1-map Synthesis from 1.5T and 3T T1 MRI with an Efficient Transformer Model

Zach Eidex, Mojtaba Safari, Tonghe Wang, Vanessa Wildman, David S. Yu, Hui Mao, Erik Middlebrooks, Aparna Kesewala, Xiaofeng Yang

arxiv logopreprintJul 11 2025
Purpose: Ultra-high-field 7T MRI offers improved resolution and contrast over standard clinical field strengths (1.5T, 3T). However, 7T scanners are costly, scarce, and introduce additional challenges such as susceptibility artifacts. We propose an efficient transformer-based model (7T-Restormer) to synthesize 7T-quality T1-maps from routine 1.5T or 3T T1-weighted (T1W) images. Methods: Our model was validated on 35 1.5T and 108 3T T1w MRI paired with corresponding 7T T1 maps of patients with confirmed MS. A total of 141 patient cases (32,128 slices) were randomly divided into 105 (25; 80) training cases (19,204 slices), 19 (5; 14) validation cases (3,476 slices), and 17 (5; 14) test cases (3,145 slices) where (X; Y) denotes the patients with 1.5T and 3T T1W scans, respectively. The synthetic 7T T1 maps were compared against the ResViT and ResShift models. Results: The 7T-Restormer model achieved a PSNR of 26.0 +/- 4.6 dB, SSIM of 0.861 +/- 0.072, and NMSE of 0.019 +/- 0.011 for 1.5T inputs, and 25.9 +/- 4.9 dB, and 0.866 +/- 0.077 for 3T inputs, respectively. Using 10.5 M parameters, our model reduced NMSE by 64 % relative to 56.7M parameter ResShift (0.019 vs 0.052, p = <.001 and by 41 % relative to 70.4M parameter ResViT (0.019 vs 0.032, p = <.001) at 1.5T, with similar advantages at 3T (0.021 vs 0.060 and 0.033; p < .001). Training with a mixed 1.5 T + 3 T corpus was superior to single-field strategies. Restricting the model to 1.5T increased the 1.5T NMSE from 0.019 to 0.021 (p = 1.1E-3) while training solely on 3T resulted in lower performance on input 1.5T T1W MRI. Conclusion: We propose a novel method for predicting quantitative 7T MP2RAGE maps from 1.5T and 3T T1W scans with higher quality than existing state-of-the-art methods. Our approach makes the benefits of 7T MRI more accessible to standard clinical workflows.

Advancing Rare Neurological Disorder Diagnosis: Addressing Challenges with Systematic Reviews and AI-Driven MRI Meta-Trans Learning Framework for NeuroDegenerative Disorders.

Gupta A, Malhotra D

pubmed logopapersJul 11 2025
Neurological Disorders (ND) affect a large portion of the global population, impacting the brain, spinal cord, and nerves. These disorders fall into categories such as NeuroDevelopmental (NDD), NeuroBiological (NBD), and NeuroDegenerative (ND<sub>e</sub>) disorders, which range from common to rare conditions. While Artificial Intelligence (AI) has advanced healthcare diagnostics, training Machine Learning (ML) and Deep Learning (DL) models for early detection of rare neurological disorders remains a challenge due to limited patient data. This data scarcity poses a significant public health issue. Meta_Trans Learning (M<sub>TA</sub>L), which integrates Meta-Learning (M<sub>t</sub>L) and Transfer Learning (TL), offers a promising solution by leveraging small datasets to extract expert patterns, generalize findings, and reduce AI bias in healthcare. This research systematically reviews studies from 2018 to 2024 to explore how ML and M<sub>TA</sub>L techniques are applied in diagnosing NDD, NBD, and ND<sub>e</sub> disorders. It also provides statistical and parametric analysis of ML and DL methods for neurological disorder diagnosis. Lastly, the study introduces a MRI-based ND<sub>e</sub>-M<sub>TA</sub>L framework to aid healthcare professionals in early detection of rare neuro disorders, aiming to enhance diagnostic accuracy and advance healthcare practices.

CSCE: Cross Supervising and Confidence Enhancement pseudo-labels for semi-supervised subcortical brain structure segmentation.

Sui Y, Zhang Y, Liu C

pubmed logopapersJul 11 2025
Robust and accurate segmentation of subcortical structures in brain MR images lays the foundation for observation, analysis and treatment planning of various brain diseases. Deep learning techniques based on Deep Neural Networks (DNNs) have achieved remarkable results in medical image segmentation by using abundant labeled data. However, due to the time-consuming and expensive of acquiring high quality annotations of brain subcortical structures, semi-supervised algorithms become practical in application. In this paper, we propose a novel framework for semi-supervised subcortical brain structure segmentation, based on pseudo-labels Cross Supervising and Confidence Enhancement (CSCE). Our framework comprises dual student-teacher models, specifically a U-Net and a TransUNet. For unlabeled data training, the TransUNet teacher generates pseudo-labels to supervise the U-Net student, while the U-Net teacher generates pseudo-labels to supervise the TransUNet student. This mutual supervision between the two models promotes and enhances their performance synergistically. We have designed two mechanisms to enhance the confidence of pseudo-labels to improve the reliability of cross-supervision: a) Using information entropy to describe uncertainty quantitatively; b) Design an auxiliary detection task to perform uncertainty detection on the pseudo-labels output by the teacher model, and then screened out reliable pseudo-labels for cross-supervision. Finally, we construct an end-to-end deep brain structure segmentation network only using one teacher network (U-Net or TransUNet) for inference, the segmentation results are significantly improved without increasing the parameters amount and segmentation time compared with supervised U-Net or TransUNet based segmentation algorithms. Comprehensive experiments are performed on two public benchmark brain MRI datasets. The proposed method achieves the best Dice scores and MHD values on both datasets compared to several recent state-of-the-art semi-supervised segmentation methods.

Tiny-objective segmentation for spot signs on multi-phase CT angiography via contrastive learning with dynamic-updated positive-negative memory banks.

Zhang J, Horn M, Tanaka K, Bala F, Singh N, Benali F, Ganesh A, Demchuk AM, Menon BK, Qiu W

pubmed logopapersJul 11 2025
Presence of spot sign on CT Angiography (CTA) is associated with hematoma growth in patients with intracerebral hemorrhage. Measuring spot sign volume over time may aid to predict hematoma expansion. Due to the difficulties that imaging characteristics of spot sign are similar with vein and calcification and spot signs are tiny appeared in CTA images to detect, our aim is to develop an automated method to pick up spot signs accurately. We proposed a novel collaborative architecture of network based on a student-teacher model by efficiently exploiting additional negative samples with contrastive learning. In particular, a set of dynamic-updated memory banks is proposed to learn more distinctive features from the extremely imbalanced positive and negative samples. Alongside, a two-steam network with an additional contextual-decoder is designed for learning more contextual information at different scales in a collaborative way. Besides, to better inhibit the false positive detection rate, a region restriction loss function is further designed to confine the spot sign segmentation within the hemorrhage. Quantitative evaluations using dice, volume correlation, sensitivity, specificity, area under the curve show that the proposed method is able to segment and detect spot signs accurately. Our proposed contractive learning framework obtained the best segmentation performance regarding a mean Dice of 0.638 ± 0211, a mean VC of 0.871 and a mean VDP of 0.348 ± 0.237 and detection performance regarding sensitivity of 0.956 with CI(0.895,1.000), specificity of 0.833 with CI(0.766,0.900), and AUC of 0.892 with CI(0.888,0.896), outperforming nnuNet, cascade-nnuNet, nnuNet++, SegRegNet, UNETR and SwinUNETR. This paper proposed a novel segmentation approach that leverages contrastive learning to explore additional negative samples concurrently for the automatic segmentation of spot signs on mCTA images. The experimental results demonstrate the effectiveness of our method and highlight its potential applicability in clinical settings for measuring spot sign volumes.

Rapid MRI-Based Synthetic CT Simulations for Precise tFUS Targeting

Hengyu Gao, Shaodong Ding, Ziyang Liu, Jiefu Zhang, Bolun Li, Zhiwu An, Li Wang, Jing Jing, Tao Liu, Yubo Fan, Zhongtao Hu

arxiv logopreprintJul 11 2025
Accurate targeting is critical for the effectiveness of transcranial focused ultrasound (tFUS) neuromodulation. While CT provides accurate skull acoustic properties, its ionizing radiation and poor soft tissue contrast limit clinical applicability. In contrast, MRI offers superior neuroanatomical visualization without radiation exposure but lacks skull property mapping. This study proposes a novel, fully CT free simulation framework that integrates MRI-derived synthetic CT (sCT) with efficient modeling techniques for rapid and precise tFUS targeting. We trained a deep-learning model to generate sCT from T1-weighted MRI and integrated it with both full-wave (k-Wave) and accelerated simulation methods, hybrid angular spectrum (kWASM) and Rayleigh-Sommerfeld ASM (RSASM). Across five skull models, both full-wave and hybrid pipelines using sCT demonstrated sub-millimeter targeting deviation, focal shape consistency (FWHM ~3.3-3.8 mm), and <0.2 normalized pressure error compared to CT-based gold standard. Notably, the kW-ASM and RS-ASM pipelines reduced simulation time from ~3320 s to 187 s and 34 s respectively, achieving ~94% and ~90% time savings. These results confirm that MRI-derived sCT combined with innovative rapid simulation techniques enables fast, accurate, and radiation-free tFUS planning, supporting its feasibility for scalable clinical applications.

Automated MRI protocoling in neuroradiology in the era of large language models.

Reiner LN, Chelbi M, Fetscher L, Stöckel JC, Csapó-Schmidt C, Guseynova S, Al Mohamad F, Bressem KK, Nawabi J, Siebert E, Wattjes MP, Scheel M, Meddeb A

pubmed logopapersJul 11 2025
This study investigates the automation of MRI protocoling, a routine task in radiology, using large language models (LLMs), comparing an open-source (LLama 3.1 405B) and a proprietary model (GPT-4o) with and without retrieval-augmented generation (RAG), a method for incorporating domain-specific knowledge. This retrospective study included MRI studies conducted between January and December 2023, along with institution-specific protocol assignment guidelines. Clinical questions were extracted, and a neuroradiologist established the gold standard protocol. LLMs were tasked with assigning MRI protocols and contrast medium administration with and without RAG. The results were compared to protocols selected by four radiologists. Token-based symmetric accuracy, the Wilcoxon signed-rank test, and the McNemar test were used for evaluation. Data from 100 neuroradiology reports (mean age = 54.2 years ± 18.41, women 50%) were included. RAG integration significantly improved accuracy in sequence and contrast media prediction for LLama 3.1 (Sequences: 38% vs. 70%, P < .001, Contrast Media: 77% vs. 94%, P < .001), and GPT-4o (Sequences: 43% vs. 81%, P < .001, Contrast Media: 79% vs. 92%, P = .006). GPT-4o outperformed LLama 3.1 in MRI sequence prediction (81% vs. 70%, P < .001), with comparable accuracies to the radiologists (81% ± 0.21, P = .43). Both models equaled radiologists in predicting contrast media administration (LLama 3.1 RAG: 94% vs. 91% ± 0.2, P = .37, GPT-4o RAG: 92% vs. 91% ± 0.24, P = .48). Large language models show great potential as decision-support tools for MRI protocoling, with performance similar to radiologists. RAG enhances the ability of LLMs to provide accurate, institution-specific protocol recommendations.
Page 29 of 92919 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.