Sort by:
Page 29 of 100991 results

Quantitative Prostate MRI, From the <i>AJR</i> Special Series on Quantitative Imaging.

Margolis DJA, Chatterjee A, deSouza NM, Fedorov A, Fennessy F, Maier SE, Obuchowski N, Punwani S, Purysko AS, Rakow-Penner R, Shukla-Dave A, Tempany CM, Boss M, Malyarenko D

pubmed logopapersAug 13 2025
Prostate MRI has traditionally relied on qualitative interpretation. However, quantitative components hold the potential to markedly improve performance. The ADC from DWI is probably the most widely recognized quantitative MRI biomarker and has shown strong discriminatory value for clinically significant prostate cancer as well as for recurrent cancer after treatment. Advanced diffusion techniques, including intravoxel incoherent motion imaging, diffusion kurtosis imaging, diffusion-tensor imaging, and specific implementations such as restriction spectrum imaging, purport even better discrimination but are more technically challenging. The inherent T1 and T2 of tissue also provide diagnostic value, with more advanced techniques deriving luminal water fraction and hybrid multidimensional MRI metrics. Dynamic contrast-enhanced imaging, primarily using a modified Tofts model, also shows independent discriminatory value. Finally, quantitative lesion size and shape features can be combined with the aforementioned techniques and can be further refined using radiomics, texture analysis, and artificial intelligence. Which technique will ultimately find widespread clinical use will depend on validation across a myriad of platforms and use cases.

CT-Based radiomics and deep learning for the preoperative prediction of peritoneal metastasis in ovarian cancers.

Liu Y, Yin H, Li J, Wang Z, Wang W, Cui S

pubmed logopapersAug 13 2025
To develop a CT-based deep learning radiomics nomogram (DLRN) for the preoperative prediction of peritoneal metastasis (PM) in patients with ovarian cancer (OC). A total of 296 patients with OCs were randomly divided into training dataset (N = 207) and test dataset (N = 89). The radiomics features and DL features were extracted from CT images of each patient. Specifically, radiomics features were extracted from the 3D tumor regions, while DL features were extracted from the 2D slice with the largest tumor region of interest (ROI). The least absolute shrinkage and selection operator (LASSO) algorithm was used to select radiomics and DL features, and the radiomics score (Radscore) and DL score (Deepscore) were calculated. Multivariate logistic regression was employed to construct clinical model. The important clinical factors, radiomics and DL features were integrated to build the DLRN. The predictive performance of the models was evaluated using the area under the receiver operating characteristic curve (AUC) and DeLong's test. Nine radiomics features and 10 DL features were selected. Carbohydrate antigen 125 (CA-125) was the independent clinical predictor. In the training dataset, the AUC values of the clinical, radiomics and DL models were 0.618, 0.842, and 0.860, respectively. In the test dataset, the AUC values of these models were 0.591, 0.819 and 0.917, respectively. The DLRN showed better performance than other models in both training and test datasets with AUCs of 0.943 and 0.951, respectively. Decision curve analysis and calibration curve showed that the DLRN provided relatively high clinical benefit in both the training and test datasets. The DLRN demonstrated superior performance in predicting preoperative PM in patients with OC. This model offers a highly accurate and noninvasive tool for preoperative prediction, with substantial clinical potential to provide critical information for individualized treatment planning, thereby enabling more precise and effective management of OC patients.

[Development of a machine learning-based diagnostic model for T-shaped uterus using transvaginal 3D ultrasound quantitative parameters].

Li SJ, Wang Y, Huang R, Yang LM, Lyu XD, Huang XW, Peng XB, Song DM, Ma N, Xiao Y, Zhou QY, Guo Y, Liang N, Liu S, Gao K, Yan YN, Xia EL

pubmed logopapersAug 12 2025
<b>Objective:</b> To develop a machine learning diagnostic model for T-shaped uterus based on quantitative parameters from 3D transvaginal ultrasound. <b>Methods:</b> A retrospective cross-sectional study was conducted, recruiting 304 patients who visited the hysteroscopy centre of Fuxing Hospital, Beijing, China, between July 2021 and June 2024 for reasons such as "infertility or recurrent pregnancy loss" and other adverse obstetric histories. Twelve experts, including seven clinicians and five sonographers, from Fuxing Hospital and Beijing Obstetrics and Gynecology Hospital of Capital Medical University, Peking University People's Hospital, and Beijing Hospital, independently and anonymously assessed the diagnosis of T-shaped uterus using a modified Delphi method. Based on the consensus results, 56 cases were classified into the T-shaped uterus group and 248 cases into the non-T-shaped uterus group. A total of 7 clinical features and 14 sonographic features were initially included. Features demonstrating significant diagnostic impact were selected using 10-fold cross-validated LASSO (Least Absolute Shrinkage and Selection Operator) regression. Four machine learning algorithms [logistic regression (LR), decision tree (DT), random forest (RF), and support vector machine (SVM)] were subsequently implemented to develop T-shaped uterus diagnostic models. Using the Python random module, the patient dataset was randomly divided into five subsets, each maintaining the original class distribution (T-shaped uterus: non-T-shaped uterus ≈ 1∶4) and a balanced number of samples between the two categories. Five-fold cross-validation was performed, with four subsets used for training and one for validation in each round, to enhance the reliability of model evaluation. Model performance was rigorously assessed using established metrics: area under the curve (AUC) of receiver operator characteristic (ROC) curve, sensitivity, specificity, precision, and F1-score. In the RF model, feature importance was assessed by the mean decrease in Gini impurity attributed to each variable. <b>Results:</b> A total of 304 patients had a mean age of (35±4) years, and the age of the T-shaped uterus group was (35±5) years; the age of the non-T-shaped uterus group was (34±4) years.. Eight features with non-zero coefficients were selected by LASSO regression, including average lateral wall indentation width, average lateral wall indentation angle, upper cavity depth, endometrial thickness, uterine cavity area, cavity width at level of lateral wall indentation, angle formed by the bilateral lateral walls, and average cornual angle (coefficient: 0.125, -0.064,-0.037,-0.030,-0.026,-0.025,-0.025 and -0.024, respectively). The RF model showed the best diagnostic performance: in training set, AUC was 0.986 (95%<i>CI</i>: 0.980-0.992), sensitivity was 0.978, specificity 0.946, precision 0.802, and F1-score 0.881; in testing set, AUC was 0.948 (95%<i>CI</i>: 0.911-0.985), sensitivity was 0.873, specificity 0.919, precision 0.716, and F1-score 0.784. RF model feature importance analysis revealed that average lateral wall indentation width, upper cavity depth, and average lateral wall indentation angle were the top three features (over 65% in total), playing a decisive role in model prediction. <b>Conclusion:</b> The machine learning models developed in this study, particularly the RF model, are promising for the diagnosis of T-shaped uterus, offering new perspectives and technical support for clinical practice.

Artificial Intelligence quantified prostate specific membrane antigen imaging in metastatic castrate-resistant prostate cancer patients treated with Lutetium-177-PSMA-617

Yu, S. L., Wang, X., Wen, S., Holler, S., Bodkin, M., Kolodney, J., Najeeb, S., Hogan, T.

medrxiv logopreprintAug 12 2025
PURPOSEThe VISION study1 found that Lutetium-177 (177Lu)-PSMA-617 ("Lu-177") improved overall survival in metastatic castrate resistant prostate cancer (mCRPC). We assessed whether artificial intelligence enhanced PSMA imaging in mCRPC patients starting Lu-177 could identify those with better treatment outcomes. PATIENTS AND METHODSWe conducted a single site, tertiary center, retrospective cohort study in 51 consecutive mCRPC patients treated 2022-2024 with Lu-177. These patients had received most standard treatments, with disease progression. Planned treatment was Lu-177 every 6 weeks while continuing androgen deprivation therapy. Before starting treatment, PSMA images were analyzed for SUVmax and quantified tumor volume using artificial intelligence software (aPROMISE, Exinni Inc.). RESULTSFifty-one mCRPC patients were treated with Lu-177; 33 (65%) received 4 or more treatment cycles and these 33 had Kaplan-Meier median overall survival (OS) of 19.3 months and 23 (70%) surviving at 24 month data analysis. At first cycle Lu-177, these 33 had significantly more favorable levels of serum albumin, alkaline phosphatase, calcium, glucose, prostate specific antigen (PSA), ECOG performance status, and F18 PSMA imaging SUV-maximum values - reflecting PSMA "target expression". In a "protocol-eligibility" analysis, 30 of the 51 patients (59%) were considered "protocol-eligible" and 21 (41%) "protocol-ineligible" based on initial clinical parameters, as defined in Methods. "Protocol-eligible" patients had OS of 14.6 mo and 63% survival at 24 months. AI-enhanced F18 PSMA quantified imaging found "protocol-eligible" tumor volume in mL to be only 39% of the volume in "ineligible" patients. CONCLUSIONIn this cohort of mCRPC patients receiving Lu-177, pre-treatment AI-assisted F18 PSMA imaging finding higher PSMA SUV / lower tumor volume associated with the patients ability to have four or more treatment cycles, protocol eligibility, and better overall survival. KEY POINTSO_ST_ABSQuestionC_ST_ABSIn mCRPC patients initiating Lu-177 therapy, can AI-assisted F18 PSMA imaging identify patients who have better treatment outomes? Findings33 (65%) of a 51 consecutive patient mCRPC cohort were able to receive 4 or more cycles Lu-177. These patients had significantly more favorable serum albumin, alkaline phosphatase, calcium, glucose, PSA, performance status, and higher AI-PSMA scan SUV-maximum values, with a trend toward lower PSMA tumor volumes in mL. They had Kaplan-Meier median OS of 19.3 months and 70% survived at 24 months. AI-enhanced PSMA tumor volumes (mL) in "protocol eligible" patients were significantly lower - only 40% - than tumor volumes of "protocol ineligible" patients. MeaningIn this cohort of mCRPC patients receiving Lu-177, pre-treatment AI-assisted F18 PSMA imaging finding higher PSMA SUV / lower tumor volume associated with the patients ability to have four or more treatment cycles, protocol eligibility, and better overall survival.

CRCFound: A Colorectal Cancer CT Image Foundation Model Based on Self-Supervised Learning.

Yang J, Cai D, Liu J, Zhuang Z, Zhao Y, Wang FA, Li C, Hu C, Gai B, Chen Y, Li Y, Wang L, Gao F, Wu X

pubmed logopapersAug 12 2025
Accurate risk stratification is crucial for determining the optimal treatment plan for patients with colorectal cancer (CRC). However, existing deep learning models perform poorly in the preoperative diagnosis of CRC and exhibit limited generalizability, primarily due to insufficient annotated data. To address these issues, CRCFound, a self-supervised learning-based CT image foundation model for CRC is proposed. After pretraining on 5137 unlabeled CRC CT images, CRCFound can learn universal feature representations and provide efficient and reliable adaptability for various clinical applications. Comprehensive benchmark tests are conducted on six different diagnostic tasks and two prognosis tasks to validate the performance of the pretrained model. Experimental results demonstrate that CRCFound can easily transfer to most CRC tasks and exhibit outstanding performance and generalization ability. Overall, CRCFound can solve the problem of insufficient annotated data and perform well in a wide range of downstream tasks of CRC, making it a promising solution for accurate diagnosis and personalized treatment of CRC patients.

Graph Neural Networks for Realistic Bleeding Prediction in Surgical Simulators.

Kakdas YC, De S, Demirel D

pubmed logopapersAug 12 2025
This study presents a novel approach using graph neural networks to predict the risk of internal bleeding using vessel maps derived from patient CT and MRI scans, aimed at enhancing the realism of surgical simulators for emergency scenarios such as trauma, where rapid detection of internal bleeding can be lifesaving. First, medical images are segmented and converted into graph representations of the vasculature, where nodes represent vessel branching points with spatial coordinates and edges encode vessel features such as length and radius. Due to no existing dataset directly labeling bleeding risks, we calculate the bleeding probability for each vessel node using a physics-based heuristic, peripheral vascular resistance via the Hagen-Poiseuille equation. A graph attention network is then trained to regress these probabilities, effectively learning to predict hemorrhage risk from the graph-structured imaging data. The model is trained using a tenfold cross-validation on a combined dataset of 1708 vessel graphs extracted from four public image datasets (MSD, KiTS, AbdomenCT, CT-ORG) with optimization via the Adam optimizer, mean squared error loss, early stopping, and L2 regularization. Our model achieves a mean R-squared of 0.86, reaching up to 0.9188 in optimal configurations and low mean training and validation losses of 0.0069 and 0.0074, respectively, in predicting bleeding risk, with higher performance on well-connected vascular graphs. Finally, we integrate the trained model into an immersive virtual reality environment to simulate intra-abdominal bleeding scenarios for immersive surgical training. The model demonstrates robust predictive performance despite the inherent sparsity of real-life datasets.

Spatial Prior-Guided Dual-Path Network for Thyroid Nodule Segmentation.

Pang C, Miao H, Zhang R, Liu Q, Lyu L

pubmed logopapersAug 12 2025
Accurate segmentation of thyroid nodules in ultrasound images is critical for clinical diagnosis but remains challenging due to low contrast and complex anatomical structures. Existing deep learning methods often rely solely on local nodule features, lacking anatomical prior knowledge of the thyroid region, which can result in misclassification of non-thyroid tissues, especially in low-quality scans. To address these issues, we propose a Spatial Prior-Guided Dual-Path Network that integrates a prior-aware encoder to model thyroid anatomical structures and a low-cost heterogeneous encoder to preserve fine-grained multi-scale features, enhancing both spatial detail and contextual awareness. To capture the diverse and irregular appearances of nodules, we design a CrossBlock module, which combines an efficient cross-attention mechanism with mixed-scale convolutional operations to enable global context modeling and local feature extraction. The network further employs a dual-decoder architecture, where one decoder learns thyroid region priors and the other focuses on accurate nodule segmentation. Gland-specific features are hierarchically refined and injected into the nodule decoder to enhance boundary delineation through anatomical guidance. Extensive experiments on the TN3K and MTNS datasets demonstrate that our method consistently outperforms state-of-the-art approaches, particularly in boundary precision and localization accuracy, offering practical value for preoperative planning and clinical decision-making.

Results of the 9th Scientific Workshop of the European Crohn's and Colitis Organisation (ECCO): Artificial Intelligence in Endoscopy, Radiology and Histology in IBD Diagnostics.

Mookhoek A, Sinonque P, Allocca M, Carter D, Ensari A, Iacucci M, Kopylov U, Verstockt B, Baumgart DC, Noor NM, El-Hussuna A, Sahnan K, Marigorta UM, Noviello D, Bossuyt P, Pellino G, Soriano A, de Laffolie J, Daperno M, Raine T, Cleynen I, Sebastian S

pubmed logopapersAug 12 2025
In this review, a comprehensive overview of the current state of artificial intelligence (AI) research in Inflammatory Bowel Disease (IBD) diagnostics in the domains of endoscopy, radiology and histology is presented. Moreover, key considerations for development of AI algorithms in medical image analysis are discussed. AI presents a potential breakthrough in real-time, objective and rapid endoscopic assessment, with implications for predicting disease progression. It is anticipated that, by harmonising multimodal data, AI will transform patient care through early diagnosis, accurate patient profiling and therapeutic response prediction. The ability of AI in cross-sectional medical imaging to improve diagnostic accuracy, automate and enable objective assessment of disease activity and predict clinical outcomes highlights its transformative potential. AI models have consistently outperformed traditional methods of image interpretation, particularly in complex areas such as differentiating IBD subtypes, identifying disease progression and complications. The use of AI in histology is a particularly dynamic research field. Implementation of AI algorithms in clinical practice is still lagging, a major hurdle being the lack of a digital workflow in many pathology institutes. Adoption is likely to start with implementation of automatic disease activity scoring. Beyond matching pathologist performance, algorithms may teach us more about IBD pathophysiology. While AI is set to substantially advance IBD diagnostics, various challenges such as heterogeneous datasets, retrospective designs and assessment of different endpoints must be addressed. Implementation of novel standards of reporting may drive an increase in research quality and overcome these obstacles.

MRI-derived quantification of hepatic vessel-to-volume ratios in chronic liver disease using a deep learning approach.

Herold A, Sobotka D, Beer L, Bastati N, Poetter-Lang S, Weber M, Reiberger T, Mandorfer M, Semmler G, Simbrunner B, Wichtmann BD, Ba-Ssalamah SA, Trauner M, Ba-Ssalamah A, Langs G

pubmed logopapersAug 12 2025
We aimed to quantify hepatic vessel volumes across chronic liver disease stages and healthy controls using deep learning-based magnetic resonance imaging (MRI) analysis, and assess correlations with biomarkers for liver (dys)function and fibrosis/portal hypertension. We assessed retrospectively healthy controls, non-advanced and advanced chronic liver disease (ACLD) patients using a 3D U-Net model for hepatic vessel segmentation on portal venous phase gadoxetic acid-enhanced 3-T MRI. Total (TVVR), hepatic (HVVR), and intrahepatic portal vein-to-volume ratios (PVVR) were compared between groups and correlated with: albumin-bilirubin (ALBI) and "model for end-stage liver disease-sodium" (MELD-Na) score) and fibrosis/portal hypertension (Fibrosis-4 (FIB-4) Score, liver stiffness measurement (LSM), hepatic venous pressure gradient (HVPG), platelet count (PLT), and spleen volume. We included 197 subjects, aged 54.9 ± 13.8 years (mean ± standard deviation), 111 males (56.3%): 35 healthy controls, 44 non-ACLD, and 118 ACLD patients. TVVR and HVVR were highest in controls (3.9; 2.1), intermediate in non-ACLD (2.8; 1.7), and lowest in ACLD patients (2.3; 1.0) (p ≤ 0.001). PVVR was reduced in both non-ACLD and ACLD patients (both 1.2) compared to controls (1.7) (p ≤ 0.001), but showed no difference between CLD groups (p = 0.999). HVVR significantly correlated indirectly with FIB-4, ALBI, MELD-Na, LSM, and spleen volume (ρ ranging from -0.27 to -0.40), and directly with PLT (ρ = 0.36). TVVR and PVVR showed similar but weaker correlations. Deep learning-based hepatic vessel volumetry demonstrated differences between healthy liver and chronic liver disease stages and shows correlations with established markers of disease severity. Hepatic vessel volumetry demonstrates differences between healthy liver and chronic liver disease stages, potentially serving as a non-invasive imaging biomarker. Deep learning-based vessel analysis can provide automated quantification of hepatic vascular changes across healthy liver and chronic liver disease stages. Automated quantification of hepatic vasculature shows significantly reduced hepatic vascular volume in advanced chronic liver disease compared to non-advanced disease and healthy liver. Decreased hepatic vascular volume, particularly in the hepatic venous system, correlates with markers of liver dysfunction, fibrosis, and portal hypertension.

Comparative analysis of tumor and mesorectum radiomics in predicting neoadjuvant chemoradiotherapy response in locally advanced rectal cancer.

Cantürk A, Yarol RC, Tasak AS, Gülmez H, Kadirli K, Bişgin T, Manoğlu B, Sökmen S, Öztop İ, Görken Bilkay İ, Sağol Ö, Sarıoğlu S, Barlık F

pubmed logopapersAug 12 2025
Neoadjuvant chemoradiotherapy (CRT) is known to increase sphincter preservation rates and decrease the risk of postoperative recurrence in patients with locally advanced rectal tumors. However, the response to CRT in patients with locally advanced rectal cancer (LARC) varies significantly. The objective of this study was to compare the performance of models based on radiomics features of the tumor alone, the mesorectum alone, and a combination of both in predicting tumor response to neoadjuvant CRT in LARC. This retrospective study included 101 patients with LARC. Patients were categorized as responders (modified Ryan score 0-1) and non-responders (modified Ryan score 2-3). Pre-CRT magnetic resonance imaging evaluations included tumor-T2 weighted imaging (T2WI), tumor-diffusion weighted imaging (DWI), tumor-apparent diffusion coefficient (ADC) maps, and mesorectum-T2WI. The first radiologist segmented the tumor and mesorectum from T2-weighted images, and the second radiologist performed tumor segmentation using DWI and ADC maps. Feature reproducibility was assessed by calculating the intraclass correlation coefficient (ICC) using a two-way mixed-effects model with absolute agreement for single measurements [ICC(3,1)]. Radiomic features with ICC values <0.60 were excluded from further analysis. Subsequently, the least absolute shrinkage and selection operator method was applied to select the most relevant radiomic features. The top five features with the highest coefficients were selected for model training. To address class imbalance between groups, the synthetic minority over-sampling technique was applied exclusively to the training folds during cross-validation. Thereafter, classification learner models were developed using 10-fold cross-validation to achieve the highest performance. The performance metrics of the final models, including accuracy, precision, recall, F1-score, and area under the receiver operating characteristic curve (AUC), were calculated to evaluate the classification performance. Among the 101 patients, 36 were classified as responders and 65 as non-responders. A total of 25 radiomic features from the tumor and 20 from the mesorectum were found to be statistically significant (<i>P</i> < 0.05). The AUC values for predicting treatment response were 0.781 for the tumor-only model (random forest), 0.726 for the mesorectum-only model (logistic regression), and 0.837 for the combined model (logistic regression). Radiomic features derived from both the tumor and mesorectum demonstrated complementary prognostic value in predicting treatment response. The inclusion of mesorectal features substantially improved model performance, with the combined model achieving the highest AUC value. These findings highlight the added predictive contribution of the mesorectum as a key peritumoral structure in radiomics-based assessment. Currently, the response of locally advanced rectal tumors to neoadjuvant therapy cannot be reliably predicted using conventional methods. Recently, the significance of the mesorectum in predicting treatment response has gained attention, although the number of studies focusing on this area remains limited. In our study, we performed radiomics analyses of both the tumor tissue and the mesorectum to predict neoadjuvant treatment response.
Page 29 of 100991 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.