Sort by:
Page 29 of 44431 results

Impact of artificial intelligence assisted lesion detection on radiologists' interpretation at multiparametric prostate MRI.

Nakrour N, Cochran RL, Mercaldo ND, Bradley W, Tsai LL, Prajapati P, Grimm R, von Busch H, Lo WC, Harisinghani MG

pubmed logopapersJun 1 2025
To compare prostate cancer lesion detection using conventional and artificial intelligence (AI)-assisted image interpretation at multiparametric MRI (mpMRI). A retrospective study of 53 consecutive patients who underwent prostate mpMRI and subsequent prostate tissue sampling was performed. Two board-certified radiologists (with 4 and 12 years of experience) blinded to the clinical information interpreted anonymized exams using the PI-RADS v2.1 framework without and with an AI-assistance tool. The AI software tool provided radiologists with gland segmentation and automated lesion detection assigning a probability score for the likelihood of the presence of clinically significant prostate cancer (csPCa). The reference standard for all cases was the prostate pathology from systematic and targeted biopsies. Statistical analyses assessed interrater agreement and compared diagnostic performances with and without AI assistance. Within the entire cohort, 42 patients (79 %) harbored Gleason-positive disease, with 25 patients (47 %) having csPCa. Radiologists' diagnostic performance for csPCa was significantly improved over conventional interpretation with AI assistance (reader A: AUC 0.82 vs. 0.72, p = 0.03; reader B: AUC 0.78 vs. 0.69, p = 0.03). Without AI assistance, 81 % (n = 36; 95 % CI: 0.89-0.91) of the lesions were scored similarly by radiologists for lesion-level characteristics, and with AI assistance, 59 % (26, 0.82-0.89) of the lesions were scored similarly. For reader A, there was a significant difference in PI-RADS scores (p = 0.02) between AI-assisted and non-assisted assessments. Signficant differences were not detected for reader B. AI-assisted prostate mMRI interpretation improved radiologist diagnostic performance over conventional interpretation independent of reader experience.

Future prospects of deep learning in esophageal cancer diagnosis and clinical decision support (Review).

Lin A, Song L, Wang Y, Yan K, Tang H

pubmed logopapersJun 1 2025
Esophageal cancer (EC) is one of the leading causes of cancer-related mortality worldwide, still faces significant challenges in early diagnosis and prognosis. Early EC lesions often present subtle symptoms and current diagnostic methods are limited in accuracy due to tumor heterogeneity, lesion morphology and variable image quality. These limitations are particularly prominent in the early detection of precancerous lesions such as Barrett's esophagus. Traditional diagnostic approaches, such as endoscopic examination, pathological analysis and computed tomography, require improvements in diagnostic precision and staging accuracy. Deep learning (DL), a key branch of artificial intelligence, shows great promise in improving the detection of early EC lesions, distinguishing benign from malignant lesions and aiding cancer staging and prognosis. However, challenges remain, including image quality variability, insufficient data annotation and limited generalization. The present review summarized recent advances in the application of DL to medical images obtained through various imaging techniques for the diagnosis of EC at different stages. It assesses the role of DL in tumor pathology, prognosis prediction and clinical decision support, highlighting its advantages in EC diagnosis and prognosis evaluation. Finally, it provided an objective analysis of the challenges currently facing the field and prospects for future applications.

MR2US-Pro: Prostate MR to Ultrasound Image Translation and Registration Based on Diffusion Models

Xudong Ma, Nantheera Anantrasirichai, Stefanos Bolomytis, Alin Achim

arxiv logopreprintMay 31 2025
The diagnosis of prostate cancer increasingly depends on multimodal imaging, particularly magnetic resonance imaging (MRI) and transrectal ultrasound (TRUS). However, accurate registration between these modalities remains a fundamental challenge due to the differences in dimensionality and anatomical representations. In this work, we present a novel framework that addresses these challenges through a two-stage process: TRUS 3D reconstruction followed by cross-modal registration. Unlike existing TRUS 3D reconstruction methods that rely heavily on external probe tracking information, we propose a totally probe-location-independent approach that leverages the natural correlation between sagittal and transverse TRUS views. With the help of our clustering-based feature matching method, we enable the spatial localization of 2D frames without any additional probe tracking information. For the registration stage, we introduce an unsupervised diffusion-based framework guided by modality translation. Unlike existing methods that translate one modality into another, we map both MR and US into a pseudo intermediate modality. This design enables us to customize it to retain only registration-critical features, greatly easing registration. To further enhance anatomical alignment, we incorporate an anatomy-aware registration strategy that prioritizes internal structural coherence while adaptively reducing the influence of boundary inconsistencies. Extensive validation demonstrates that our approach outperforms state-of-the-art methods by achieving superior registration accuracy with physically realistic deformations in a completely unsupervised fashion.

Development and interpretation of a pathomics-based model for the prediction of immune therapy response in colorectal cancer.

Luo Y, Tian Q, Xu L, Zeng D, Zhang H, Zeng T, Tang H, Wang C, Chen Y

pubmed logopapersMay 31 2025
Colorectal cancer (CRC) is the third most common malignancy and the second leading cause of cancer-related deaths worldwide, with a 5-year survival rate below 20 %. Immunotherapy, particularly immune checkpoint blockade (ICB)-based therapies, has become an important approach for CRC treatment. However, only specific patient subsets demonstrate significant clinical benefits. Although the TIDE algorithm can predict immunotherapy responses, the reliance on transcriptome sequencing data limits its clinical applicability. Recent advances in artificial intelligence and computational pathology provide new avenues for medical image analysis.In this study, we classified TCGA-CRC samples into immunotherapy responder and non-responder groups using the TIDE algorithm. Further, a pathomics model based on convolutional neural networks was constructed to directly predict immunotherapy responses from histopathological images. Single-cell analysis revealed that fibroblasts may induce immunotherapy resistance in CRC through collagen-CD44 and ITGA1 + ITGB1 signaling axes. The developed pathomics model demonstrated excellent classification performance in the test set, with an AUC of 0.88 at the patch level and 0.85 at the patient level. Moreover, key pathomics features were identified through SHAP analysis. This innovative predictive tool provides a novel method for clinical decision-making in CRC immunotherapy, with potential to optimize treatment strategies and advance precision medicine.

Discriminating Clear Cell From Non-Clear Cell Renal Cell Carcinoma: A Machine Learning Approach Using Contrast-enhanced Ultrasound Radiomics.

Liang M, Wu S, Ou B, Wu J, Qiu H, Zhao X, Luo B

pubmed logopapersMay 31 2025
The aim of this investigation is to assess the clinical usefulness of a machine learning model using contrast-enhanced ultrasound (CEUS) radiomics in discriminating clear cell renal cell carcinoma (ccRCC) from non-ccRCC. A total of 292 patients with pathologically confirmed RCC subtypes underwent CEUS (development set. n = 231; validation set, n = 61) in a retrospective study. Radiomics features were derived from CEUS images acquired during the cortical and parenchymal phases. Radiomics models were developed using logistic regression (LR), support vector machine, decision tree, naive Bayes, gradient boosting machine, and random forest. The suitable model was identified based on the area under the receiver operating characteristic curve (AUC). Appropriate clinical CEUS features were identified through univariate and multivariate LR analyses to develop a clinical model. By integrating radiomics and clinical CEUS features, a combined model was established. A comprehensive evaluation of the models' performance was conducted. After the reduction and selection process were applied to 2250 radiomics features, the final set of 8 features was considered valuable. Among the models, the LR model had the highest performance on the validation set and showed good robustness. In both the development and validation sets, both the radiomics (AUC, 0.946 and 0.927) and the combined models (AUC, 0.949 and 0.925) outperformed the clinical model (AUC, 0.851 and 0.768), showing higher AUC values (all p < 0.05). The combined model exhibited favorable calibration and clinical benefit. The combined model integrating clinical CEUS and CEUS radiomics features demonstrated good diagnostic performance in discriminating ccRCC from non-ccRCC.

From Guidelines to Intelligence: How AI Refines Thyroid Nodule Biopsy Decisions.

Zeng W, He Y, Xu R, Mai W, Chen Y, Li S, Yi W, Ma L, Xiong R, Liu H

pubmed logopapersMay 31 2025
To evaluate the value of combining American College of Radiology (ACR) Thyroid Imaging Reporting and Data System (TI-RADS) with the Demetics ultrasound diagnostic system in reducing the rate of fine-needle aspiration (FNA) biopsies for thyroid nodules. A retrospective study analyzed 548 thyroid nodules from 454 patients, all meeting ACR TI-RADS guidelines (category ≥3 and diameter ≥10 mm) for FNA. Nodule was reclassified using the combined ACR TI-RADS and Demetics system (De TI-RADS), and the biopsy rates were compared. Using ACR TI-RADS alone, the biopsy rate was 70.6% (387/548), with a positive predictive value (PPV) of 52.5% (203/387), an unnecessary biopsy rate of 47.5% (184/387) and a missed diagnosis rate of 11.0% (25/228). Incorporating Demetics reduced the biopsy rate to 48.1% (264/548), the unnecessary biopsy rate to 17.4% (46/265) and the missed diagnosis rate to 4.4% (10/228), while increasing PPV to 82.6% (218/264). All differences between ACR TI-RADS and De TI-RADS were statistically significant (p < 0.05). The integration of ACR TI-RADS with the Demetics system improves nodule risk assessment by enhancing diagnostic and efficiency. This approach reduces unnecessary biopsies and missed diagnoses while increasing PPV, offering a more reliable tool for clinicians and patients.

Study of AI algorithms on mpMRI and PHI for the diagnosis of clinically significant prostate cancer.

Luo Z, Li J, Wang K, Li S, Qian Y, Xie W, Wu P, Wang X, Han J, Zhu W, Wang H, He Y

pubmed logopapersMay 31 2025
To study the feasibility of multiple factors in improving the diagnostic accuracy of clinically significant prostate cancer (csPCa). A retrospective study with 131 patients analyzes age, PSA, PHI and pathology. Patients with ISUP > 2 were classified as csPCa, and others are non-csPCa. The mpMRI images were processed by a homemade AI algorithm, obtaining positive or negative AI results. Four logistic regression models were fitted, with pathological findings as the dependent variable. The predicted probability of the patients was used to test the prediction efficacy of the models. The DeLong test was performed to compare differences in the area under the receiver operating characteristic (ROC) curves (AUCs) between the models. The study includes 131 patients: 62 were diagnosed with csPCa and 69 were non-csPCa. Statically significant differences were found in age, PSA, PIRADS score, AI results, and PHI values between the 2 groups (all P ≤ 0.001). The conventional model (R<sup>2</sup> = 0.389), the AI model (R<sup>2</sup> = 0.566), and the PHI model (R<sup>2</sup> = 0.515) were compared to the full model (R<sup>2</sup> = 0.626) with ANOVA and showed statistically significant differences (all P < 0.05). The AUC of the full model (0.921 [95% CI: 0.871-0.972]) was significantly higher than that of the conventional model (P = 0.001), AI model (P < 0.001), and PHI model (P = 0.014). Combining multiple factors such as age, PSA, PIRADS score and PHI, adding AI algorithm based on mpMRI, the diagnostic accuracy of csPCa can be improved.

Relationship between spleen volume and diameter for assessment of response to treatment on CT in patients with hematologic malignancies enrolled in clinical trials.

Hasenstab KA, Lu J, Leong LT, Bossard E, Pylarinou-Sinclair E, Devi K, Cunha GM

pubmed logopapersMay 31 2025
Investigate spleen diameter (d) and volume (v) relationship in patients with hematologic malignancies (HM) by determining volumetric thresholds that best correlate to established diameter thresholds for assessing response to treatment. Exploratorily, interrogate the impact of volumetric measurements in response categories and as a predictor of response. Secondary analysis of prospectively collected clinical trial data of 382 patients with HM. Spleen diameters were computed following Lugano criteria and volumes using deep learning segmentation. d and v relationship was estimated using power regression model, volumetric thresholds ([Formula: see text]) for treatment response estimated; threshold search to determine percentual change ([Formula: see text] and minimum volumetric increase ([Formula: see text]) that maximize agreement with Lugano criteria performed. Spleen diameter and volume predictive performance for clinical response investigated using random forest model. [Formula: see text] describes the relationship between spleen diameter and volume. [Formula: see text] for splenomegaly was 546 cm³. [Formula: see text], [Formula: see text], and [Formula: see text] for assessing response resulting in highest agreement with Lugano criteria were 570 cm<sup>3</sup>, 73%, and 170 cm<sup>3</sup>, respectively. Predictive performance for response between diameter and volume were not significantly different (P=0.78). This study provides empirical spleen volume threshold and percentual changes that best correlate with diameter thresholds, i.e., Lugano criteria, for assessment of response to treatment in patients with HM. In our dataset use of spleen volumetric thresholds versus diameter thresholds resulted in similar response assessment categories and did not signal differences in predictive values for response.

Accelerated proton resonance frequency-based magnetic resonance thermometry by optimized deep learning method.

Xu S, Zong S, Mei CS, Shen G, Zhao Y, Wang H

pubmed logopapersMay 31 2025
Proton resonance frequency (PRF)-based magnetic resonance (MR) thermometry plays a critical role in thermal ablation therapies through focused ultrasound (FUS). For clinical applications, accurate and rapid temperature feedback is essential to ensure both the safety and effectiveness of these treatments. This work aims to improve temporal resolution in dynamic MR temperature map reconstructions using an enhanced deep-learning method, thereby supporting the real-time monitoring required for effective FUS treatments. Five classical neural network architectures-cascade net, complex-valued U-Net, shift window transformer for MRI, real-valued U-Net, and U-Net with residual blocks-along with training-optimized methods were applied to reconstruct temperature maps from 2-fold and 4-fold undersampled k-space data. The training enhancements included pre-training/training-phase data augmentations, knowledge distillation, and a novel amplitude-phase decoupling loss function. Phantom and ex vivo tissue heating experiments were conducted using a FUS transducer. Ground truth was the complex MR images with accurate temperature changes, and datasets were manually undersampled to simulate such acceleration here. Separate testing datasets were used to evaluate real-time performance and temperature accuracy. Furthermore, our proposed deep learning-based rapid reconstruction approach was validated on a clinical dataset obtained from patients with uterine fibroids, demonstrating its clinical applicability. Acceleration factors of 1.9 and 3.7 were achieved for 2× and 4× k-space under samplings, respectively. The deep learning-based reconstruction using ResUNet incorporating the four optimizations, showed superior performance. For 2-fold acceleration, the RMSE of temperature map patches were 0.89°C and 1.15°C for the phantom and ex vivo testing datasets, respectively. The DICE coefficient for the 43°C isotherm-enclosed regions was 0.81, and the Bland-Altman analysis indicated a bias of -0.25°C with limits of agreement of ±2.16°C. In the 4-fold under-sampling case, these evaluation metrics showed approximately a 10% reduction in accuracy. Additionally, the DICE coefficient measuring the overlap between the reconstructed temperature maps (using the optimized ResUNet) and the ground truth, specifically in regions where the temperature exceeded the 43°C threshold, were 0.77 and 0.74 for the 2× and 4× under-sampling scenarios, respectively. This study demonstrates that deep learning-based reconstruction significantly enhances the accuracy and efficiency of MR thermometry, particularly in the context of FUS-based clinical treatments for uterine fibroids. This approach could also be extended to other applications such as essential tremor and prostate cancer treatments where MRI-guided FUS plays a critical role.

Deep learning without borders: recent advances in ultrasound image classification for liver diseases diagnosis.

Yousefzamani M, Babapour Mofrad F

pubmed logopapersMay 30 2025
Liver diseases are among the top global health burdens. Recently, there has been an increasing significance of diagnostics without discomfort to the patient; among them, ultrasound is the most used. Deep learning, in particular convolutional neural networks, has revolutionized the classification of liver diseases by automatically performing some specific analyses of difficult images. This review summarizes the progress that has been made in deep learning techniques for the classification of liver diseases using ultrasound imaging. It evaluates various models from CNNs to their hybrid versions, such as CNN-Transformer, for detecting fatty liver, fibrosis, and liver cancer, among others. Several challenges in the generalization of data and models across a different clinical environment are also discussed. Deep learning has great prospects for automatic diagnosis of liver diseases. Most of the models have performed with high accuracy in different clinical studies. Despite this promise, challenges relating to generalization have remained. Future hardware developments and access to quality clinical data continue to further improve the performance of these models and ensure their vital role in the diagnosis of liver diseases.
Page 29 of 44431 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.