Sort by:
Page 29 of 74733 results

Redefining prostate cancer care: innovations and future directions in active surveillance.

Koett M, Melchior F, Artamonova N, Bektic J, Heidegger I

pubmed logopapersJul 1 2025
This review provides a critical analysis of recent advancements in active surveillance (AS), emphasizing updates from major international guidelines and their implications for clinical practice. Recent revisions to international guidelines have broadened the eligibility criteria for AS to include selected patients with ISUP grade group 2 prostate cancer. This adjustment acknowledges that certain intermediate-risk cancers may be appropriate for AS, reflecting a heightened focus on achieving a balance between oncologic control and maintaining quality of life by minimizing the risk of overtreatment. This review explores key innovations in AS for prostate cancer, including multi parametric magnetic resonance imaging (mpMRI), genomic biomarkers, and risk calculators, which enhance patient selection and monitoring. While promising, their routine use remains debated due to guideline inconsistencies, cost, and accessibility. Special focus is given to biomarkers for identifying ISUP grade group 2 cancers suitable for AS. Additionally, the potential of artificial intelligence to improve diagnostic accuracy and risk stratification is examined. By integrating these advancements, this review provides a critical perspective on optimizing AS for more personalized and effective prostate cancer management.

The value of machine learning based on spectral CT quantitative parameters in the distinguishing benign from malignant thyroid micro-nodules.

Song Z, Liu Q, Huang J, Zhang D, Yu J, Zhou B, Ma J, Zou Y, Chen Y, Tang Z

pubmed logopapersJul 1 2025
More cases of thyroid micro-nodules have been diagnosed annually in recent years because of advancements in diagnostic technologies and increased public health awareness. To explore the application value of various machine learning (ML) algorithms based on dual-layer spectral computed tomography (DLCT) quantitative parameters in distinguishing benign from malignant thyroid micro-nodules. All 338 thyroid micro-nodules (177 malignant micro-nodules and 161 benign micro-nodules) were randomly divided into a training cohort (n = 237) and a testing cohort (n = 101) at a ratio of 7:3. Four typical radiological features and 19 DLCT quantitative parameters in the arterial phase and venous phase were measured. Recursive feature elimination was employed for variable selection. Three ML algorithms-support vector machine (SVM), logistic regression (LR), and naive Bayes (NB)-were implemented to construct predictive models. Predictive performance was evaluated via receiver operating characteristic (ROC) curve analysis. A variable set containing 6 key variables with "one standard error" rules was identified in the SVM model, which performed well in the training and testing cohorts (area under the ROC curve (AUC): 0.924 and 0.931, respectively). A variable set containing 2 key variables was identified in the NB model, which performed well in the training and testing cohorts (AUC: 0.882 and 0.899, respectively). A variable set containing 8 key variables was identified in the LR model, which performed well in the training and testing cohorts (AUC: 0.924 and 0.925, respectively). And nine ML models were developed with varying variable sets (2, 6, or 8 variables), all of which consistently achieved AUC values above 0.85 in the training, cross validation (CV)-Training, CV-Validation, and testing cohorts. Artificial intelligence-based DLCT quantitative parameters are promising for distinguishing benign from malignant thyroid micro-nodules.

Effect of artificial intelligence-aided differentiation of adenomatous and non-adenomatous colorectal polyps at CT colonography on radiologists' therapy management.

Grosu S, Fabritius MP, Winkelmann M, Puhr-Westerheide D, Ingenerf M, Maurus S, Graser A, Schulz C, Knösel T, Cyran CC, Ricke J, Kazmierczak PM, Ingrisch M, Wesp P

pubmed logopapersJul 1 2025
Adenomatous colorectal polyps require endoscopic resection, as opposed to non-adenomatous hyperplastic colorectal polyps. This study aims to evaluate the effect of artificial intelligence (AI)-assisted differentiation of adenomatous and non-adenomatous colorectal polyps at CT colonography on radiologists' therapy management. Five board-certified radiologists evaluated CT colonography images with colorectal polyps of all sizes and morphologies retrospectively and decided whether the depicted polyps required endoscopic resection. After a primary unassisted reading based on current guidelines, a second reading with access to the classification of a radiomics-based random-forest AI-model labelling each polyp as "non-adenomatous" or "adenomatous" was performed. Performance was evaluated using polyp histopathology as the reference standard. 77 polyps in 59 patients comprising 118 polyp image series (47% supine position, 53% prone position) were evaluated unassisted and AI-assisted by five independent board-certified radiologists, resulting in a total of 1180 readings (subsequent polypectomy: yes or no). AI-assisted readings had higher accuracy (76% +/- 1% vs. 84% +/- 1%), sensitivity (78% +/- 6% vs. 85% +/- 1%), and specificity (73% +/- 8% vs. 82% +/- 2%) in selecting polyps eligible for polypectomy (p < 0.001). Inter-reader agreement was improved in the AI-assisted readings (Fleiss' kappa 0.69 vs. 0.92). AI-based characterisation of colorectal polyps at CT colonography as a second reader might enable a more precise selection of polyps eligible for subsequent endoscopic resection. However, further studies are needed to confirm this finding and histopathologic polyp evaluation is still mandatory. Question This is the first study evaluating the impact of AI-based polyp classification in CT colonography on radiologists' therapy management. Findings Compared with unassisted reading, AI-assisted reading had higher accuracy, sensitivity, and specificity in selecting polyps eligible for polypectomy. Clinical relevance Integrating an AI tool for colorectal polyp classification in CT colonography could further improve radiologists' therapy recommendations.

Measuring kidney stone volume - practical considerations and current evidence from the EAU endourology section.

Grossmann NC, Panthier F, Afferi L, Kallidonis P, Somani BK

pubmed logopapersJul 1 2025
This narrative review provides an overview of the use, differences, and clinical impact of current methods for kidney stone volume assessment. The different approaches to volume measurement are based on noncontrast computed tomography (NCCT). While volume measurement using formulas is sufficient for smaller stones, it tends to overestimate volume for larger or irregularly shaped calculi. In contrast, software-based segmentation significantly improves accuracy and reproducibility, and artificial intelligence based volumetry additionally shows excellent agreement with reference standards while reducing observer variability and measurement time. Moreover, specific CT preparation protocols may further enhance image quality and thus improve measurement accuracy. Clinically, stone volume has proven to be a superior predictor of stone-related events during follow-up, spontaneous stone passage under conservative management, and stone-free rates after shockwave lithotripsy (SWL) and ureteroscopy (URS) compared to linear measurements. Although manual measurement remains practical, its accuracy diminishes for complex or larger stones. Software-based segmentation and volumetry offer higher precision and efficiency but require established standards and broader access to dedicated software for routine clinical use.

Improved segmentation of hepatic vascular networks in ultrasound volumes using 3D U-Net with intensity transformation-based data augmentation.

Takahashi Y, Sugino T, Onogi S, Nakajima Y, Masuda K

pubmed logopapersJul 1 2025
Accurate three-dimensional (3D) segmentation of hepatic vascular networks is crucial for supporting ultrasound-mediated theranostics for liver diseases. Despite advancements in deep learning techniques, accurate segmentation remains challenging due to ultrasound image quality issues, including intensity and contrast fluctuations. This study introduces intensity transformation-based data augmentation methods to improve deep convolutional neural network-based segmentation of hepatic vascular networks. We employed a 3D U-Net, which leverages spatial contextual information, as the baseline. To address intensity and contrast fluctuations and improve 3D U-Net performance, we implemented data augmentation using high-contrast intensity transformation with S-shaped tone curves and low-contrast intensity transformation with Gamma and inverse S-shaped tone curves. We conducted validation experiments on 78 ultrasound volumes to evaluate the effect of both geometric and intensity transformation-based data augmentations. We found that high-contrast intensity transformation-based data augmentation decreased segmentation accuracy, while low-contrast intensity transformation-based data augmentation significantly improved Recall and Dice. Additionally, combining geometric and low-contrast intensity transformation-based data augmentations, through an OR operation on their results, further enhanced segmentation accuracy, achieving improvements of 9.7% in Recall and 3.3% in Dice. This study demonstrated the effectiveness of low-contrast intensity transformation-based data augmentation in improving volumetric segmentation of hepatic vascular networks from ultrasound volumes.

Intraindividual Comparison of Image Quality Between Low-Dose and Ultra-Low-Dose Abdominal CT With Deep Learning Reconstruction and Standard-Dose Abdominal CT Using Dual-Split Scan.

Lee TY, Yoon JH, Park JY, Park SH, Kim H, Lee CM, Choi Y, Lee JM

pubmed logopapersJul 1 2025
The aim of this study was to intraindividually compare the conspicuity of focal liver lesions (FLLs) between low- and ultra-low-dose computed tomography (CT) with deep learning reconstruction (DLR) and standard-dose CT with model-based iterative reconstruction (MBIR) from a single CT using dual-split scan in patients with suspected liver metastasis via a noninferiority design. This prospective study enrolled participants who met the eligibility criteria at 2 tertiary hospitals in South Korea from June 2022 to January 2023. The criteria included ( a ) being aged between 20 and 85 years and ( b ) having suspected or known liver metastases. Dual-source CT scans were conducted, with the standard radiation dose divided in a 2:1 ratio between tubes A and B (67% and 33%, respectively). The voltage settings of 100/120 kVp were selected based on the participant's body mass index (<30 vs ≥30 kg/m 2 ). For image reconstruction, MBIR was utilized for standard-dose (100%) images, whereas DLR was employed for both low-dose (67%) and ultra-low-dose (33%) images. Three radiologists independently evaluated FLL conspicuity, the probability of metastasis, and subjective image quality using a 5-point Likert scale, in addition to quantitative signal-to-noise and contrast-to-noise ratios. The noninferiority margins were set at -0.5 for conspicuity and -0.1 for detection. One hundred thirty-three participants (male = 58, mean body mass index = 23.0 ± 3.4 kg/m 2 ) were included in the analysis. The low- and ultra-low- dose had a lower radiation dose than the standard-dose (median CT dose index volume: 3.75, 1.87 vs 5.62 mGy, respectively, in the arterial phase; 3.89, 1.95 vs 5.84 in the portal venous phase, P < 0.001 for all). Median FLL conspicuity was lower in the low- and ultra-low-dose scans compared with the standard-dose (3.0 [interquartile range, IQR: 2.0, 4.0], 3.0 [IQR: 1.0, 4.0] vs 3.0 [IQR: 2.0, 4.0] in the arterial phase; 4.0 [IQR: 1.0, 5.0], 3.0 [IQR: 1.0, 4.0] vs 4.0 [IQR: 2.0, 5.0] in the portal venous phases), yet within the noninferiority margin ( P < 0.001 for all). FLL detection was also lower but remained within the margin (lesion detection rate: 0.772 [95% confidence interval, CI: 0.727, 0.812], 0.754 [0.708, 0.795], respectively) compared with the standard-dose (0.810 [95% CI: 0.770, 0.844]). Sensitivity for liver metastasis differed between the standard- (80.6% [95% CI: 76.0, 84.5]), low-, and ultra-low-doses (75.7% [95% CI: 70.2, 80.5], 73.7 [95% CI: 68.3, 78.5], respectively, P < 0.001 for both), whereas specificity was similar ( P > 0.05). Low- and ultra-low-dose CT with DLR showed noninferior FLL conspicuity and detection compared with standard-dose CT with MBIR. Caution is needed due to a potential decrease in sensitivity for metastasis ( clinicaltrials.gov/NCT05324046 ).

Noninvasive identification of HER2 status by integrating multiparametric MRI-based radiomics model with the vesical imaging-reporting and data system (VI-RADS) score in bladder urothelial carcinoma.

Luo C, Li S, Han Y, Ling J, Wu X, Chen L, Wang D, Chen J

pubmed logopapersJul 1 2025
HER2 expression is crucial for the application of HER2-targeted antibody-drug conjugates. This study aims to construct a predictive model by integrating multiparametric magnetic resonance imaging (mpMRI) based multimodal radiomics and the Vesical Imaging-Reporting and Data System (VI-RADS) score for noninvasive identification of HER2 status in bladder urothelial carcinoma (BUC). A total of 197 patients were retrospectively enrolled and randomly divided into a training cohort (n = 145) and a testing cohort (n = 52). The multimodal radiomics features were derived from mpMRI, which were also utilized for VI-RADS score evaluation. LASSO algorithm and six machine learning methods were applied for radiomics feature screening and model construction. The optimal radiomics model was selected to integrate with VI-RADS score to predict HER2 status, which was determined by immunohistochemistry. The performance of predictive model was evaluated by receiver operating characteristic curve with area under the curve (AUC). Among the enrolled patients, 110 (55.8%) patients were demonstrated with HER2-positive and 87 (44.2%) patients were HER2-negative. Eight features were selected to establish radiomics signature. The optimal radiomics signature achieved the AUC values of 0.841 (95% CI 0.779-0.904) in the training cohort and 0.794 (95%CI 0.650-0.938) in the testing cohort, respectively. The KNN model was selected to evaluate the significance of radiomics signature and VI-RADS score, which were integrated as a predictive nomogram. The AUC values for the nomogram in the training and testing cohorts were 0.889 (95%CI 0.840-0.938) and 0.826 (95%CI 0.702-0.950), respectively. Our study indicated the predictive model based on the integration of mpMRI-based radiomics and VI-RADS score could accurately predict HER2 status in BUC. The model might aid clinicians in tailoring individualized therapeutic strategies.

Longitudinal twin growth discordance patterns and adverse perinatal outcomes.

Prasad S, Ayhan I, Mohammed D, Kalafat E, Khalil A

pubmed logopapersJul 1 2025
Growth discordance in twin pregnancies is associated with increased perinatal morbidity and mortality, yet the patterns of discordance progression and the utility of Doppler assessments remain underinvestigated. The objective of this study was to conduct a longitudinal assessment of intertwin growth and Doppler discordance to identify possible distinct patterns and to investigate the predictive value of longitudinal discordance patterns for adverse perinatal outcomes in twin pregnancies. This retrospective cohort study included twin pregnancies followed and delivered at a tertiary hospital in London (United Kingdom) between 2010 and 2023. We included pregnancies with at least 3 ultrasound assessments after 18 weeks and delivery beyond 34 weeks' gestation. Monoamniotic twin pregnancies, pregnancies with twin-to-twin transfusion syndrome, genetic or structural abnormalities, or incomplete data were excluded. Data on chorionicity, biometry, Doppler indices, maternal characteristics and obstetrics, and neonatal outcomes were extracted from electronic records. Doppler assessment included velocimetry of the umbilical artery, middle cerebral artery, and cerebroplacental ratio. Intertwin growth discordance was calculated for each scan. The primary outcome was a composite of perinatal mortality and neonatal morbidity. Statistical analysis involved multilevel mixed effects regression models and unsupervised machine learning algorithms, specifically k-means clustering, to identify distinct patterns of intertwin discordance and their predictive value. Predictive models were compared using the area under the receiver operating characteristic curve, calibration intercept, and slope, validated with repeated cross-validation. Analyses were performed using R, with significance set at P<.05. Data from 823 twin pregnancies (647 dichorionic, 176 monochorionic) were analyzed. Five distinct patterns of intertwin growth discordance were identified using an unsupervised learning algorithm that clustered twin pairs based on the progression and patterns of discordance over gestation: low-stable (n=204, 24.8%), mild-decreasing (n=171, 20.8%), low-increasing (n=173, 21.0%), mild-increasing (n=189, 23.0%), and high-stable (n=86, 10.4%). In the high-stable cluster, the rates of perinatal morbidity (46.5%, 40/86) and mortality (9.3%, 8/86) were significantly higher compared to the low-stable (reference) cluster (P<.001). High-stable growth pattern was also associated with a significantly higher risk of composite adverse perinatal outcomes (odds ratio: 70.19, 95% confidence interval: 24.18-299.03, P<.001; adjusted odds ratio: 76.44, 95% confidence interval: 25.39-333.02, P<.001). The model integrating discordance pattern with cerebroplacental ratio discordance at the last ultrasound before delivery demonstrated superior predictive accuracy, evidenced by the highest area under the receiver operating characteristic curve of 0.802 (95% confidence interval: 0.712-0.892, P<.001), compared to only discordance patterns (area under the receiver operating characteristic curve: 0.785, 95% confidence interval: 0.697-0.873), intertwin weight discordance at the last ultrasound prior to delivery (area under the receiver operating characteristic curve: 0.677, 95% confidence interval: 0.545-0.809), combination of single measurements of estimated fetal weight and cardiopulmonary resuscitation discordance at the last ultrasound prior to delivery (area under the receiver operating characteristic curve: 0.702, 95% confidence interval: 0.586-0.818), and single measurement of cardiopulmonary resuscitation discordance only at the last ultrasound (area under the receiver operating characteristic curve: 0.633, 95% confidence interval: 0.515-0.751). Using an unsupervised machine learning algorithm, we identified 5 distinct trajectories of intertwin fetal growth discordance. Consistent high discordance is associated with increased rates of adverse perinatal outcomes, with a dose-response relationship. Moreover, a predictive model integrating discordance trajectory and cardiopulmonary resuscitation discordance at the last visit demonstrated superior predictive accuracy for the prediction of composite adverse perinatal outcomes, compared to either of these measurements alone or a single value of estimated fetal weight discordance at the last ultrasound prior to delivery.

LUNETR: Language-Infused UNETR for precise pancreatic tumor segmentation in 3D medical image.

Shi Z, Zhang R, Wei X, Yu C, Xie H, Hu Z, Chen X, Zhang Y, Xie B, Luo Z, Peng W, Xie X, Li F, Long X, Li L, Hu L

pubmed logopapersJul 1 2025
The identification of early micro-lesions and adjacent blood vessels in CT scans plays a pivotal role in the clinical diagnosis of pancreatic cancer, considering its aggressive nature and high fatality rate. Despite the widespread application of deep learning methods for this task, several challenges persist: (1) the complex background environment in abdominal CT scans complicates the accurate localization of potential micro-tumors; (2) the subtle contrast between micro-lesions within pancreatic tissue and the surrounding tissues makes it challenging for models to capture these features accurately; and (3) tumors that invade adjacent blood vessels pose significant barriers to surgical procedures. To address these challenges, we propose LUNETR (Language-Infused UNETR), an advanced multimodal encoder model that combines textual and image information for precise medical image segmentation. The integration of an autoencoding language model with cross-attention enabling our model to effectively leverage semantic associations between textual and image data, thereby facilitating precise localization of potential pancreatic micro-tumors. Additionally, we designed a Multi-scale Aggregation Attention (MSAA) module to comprehensively capture both spatial and channel characteristics of global multi-scale image data, enhancing the model's capacity to extract features from micro-lesions embedded within pancreatic tissue. Furthermore, in order to facilitate precise segmentation of pancreatic tumors and nearby blood vessels and address the scarcity of multimodal medical datasets, we collaborated with Zhuzhou Central Hospital to construct a multimodal dataset comprising CT images and corresponding pathology reports from 135 pancreatic cancer patients. Our experimental results surpass current state-of-the-art models, with the incorporation of the semantic encoder improving the average Dice score for pancreatic tumor segmentation by 2.23 %. For the Medical Segmentation Decathlon (MSD) liver and lung cancer datasets, our model achieved an average Dice score improvement of 4.31 % and 3.67 %, respectively, demonstrating the efficacy of the LUNETR.

Tumor grade-titude: XGBoost radiomics paves the way for RCC classification.

Ellmann S, von Rohr F, Komina S, Bayerl N, Amann K, Polifka I, Hartmann A, Sikic D, Wullich B, Uder M, Bäuerle T

pubmed logopapersJul 1 2025
This study aimed to develop and evaluate a non-invasive XGBoost-based machine learning model using radiomic features extracted from pre-treatment CT images to differentiate grade 4 renal cell carcinoma (RCC) from lower-grade tumours. A total of 102 RCC patients who underwent contrast-enhanced CT scans were included in the analysis. Radiomic features were extracted, and a two-step feature selection methodology was applied to identify the most relevant features for classification. The XGBoost model demonstrated high performance in both training (AUC = 0.87) and testing (AUC = 0.92) sets, with no significant difference between the two (p = 0.521). The model also exhibited high sensitivity, specificity, positive predictive value, and negative predictive value. The selected radiomic features captured both the distribution of intensity values and spatial relationships, which may provide valuable insights for personalized treatment decision-making. Our findings suggest that the XGBoost model has the potential to be integrated into clinical workflows to facilitate personalized adjuvant immunotherapy decision-making, ultimately improving patient outcomes. Further research is needed to validate the model in larger, multicentre cohorts and explore the potential of combining radiomic features with other clinical and molecular data.
Page 29 of 74733 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.