Sort by:
Page 28 of 3503499 results

Analysis of the Compaction Behavior of Textile Reinforcements in Low-Resolution In-Situ CT Scans via Machine-Learning and Descriptor-Based Methods

Christian Düreth, Jan Condé-Wolter, Marek Danczak, Karsten Tittmann, Jörn Jaschinski, Andreas Hornig, Maik Gude

arxiv logopreprintAug 13 2025
A detailed understanding of material structure across multiple scales is essential for predictive modeling of textile-reinforced composites. Nesting -- characterized by the interlocking of adjacent fabric layers through local interpenetration and misalignment of yarns -- plays a critical role in defining mechanical properties such as stiffness, permeability, and damage tolerance. This study presents a framework to quantify nesting behavior in dry textile reinforcements under compaction using low-resolution computed tomography (CT). In-situ compaction experiments were conducted on various stacking configurations, with CT scans acquired at 20.22 $\mu$m per voxel resolution. A tailored 3D{-}UNet enabled semantic segmentation of matrix, weft, and fill phases across compaction stages corresponding to fiber volume contents of 50--60 %. The model achieved a minimum mean Intersection-over-Union of 0.822 and an $F1$ score of 0.902. Spatial structure was subsequently analyzed using the two-point correlation function $S_2$, allowing for probabilistic extraction of average layer thickness and nesting degree. The results show strong agreement with micrograph-based validation. This methodology provides a robust approach for extracting key geometrical features from industrially relevant CT data and establishes a foundation for reverse modeling and descriptor-based structural analysis of composite preforms.

Ultrasound Phase Aberrated Point Spread Function Estimation with Convolutional Neural Network: Simulation Study.

Shen WH, Lin YA, Li ML

pubmed logopapersAug 13 2025
Ultrasound imaging systems rely on accurate point spread function (PSF) estimation to support advanced image quality enhancement techniques such as deconvolution and speckle reduction. Phase aberration, caused by sound speed inhomogeneity within biological tissue, is inevitable in ultrasound imaging. It distorts the PSF by increasing sidelobe level and introducing asymmetric amplitude, making PSF estimation under phase aberration highly challenging. In this work, we propose a deep learning framework for estimating phase-aberrated PSFs using U-Net and complex U-Net architectures, operating on RF and complex k-space data, respectively, with the latter demonstrating superior performance. Synthetic phase aberration data, generated using the near-field phase screen model, is employed to train the networks. We evaluate various loss functions and find that log-compressed B-mode perceptual loss achieves the best performance, accurately predicting both the mainlobe and near sidelobe regions of the PSF. Simulation results validate the effectiveness of our approach in estimating PSFs under varying levels of phase aberration. Furthermore, we demonstrate that more accurate PSF estimation improves performance in a downstream phase aberration correction task, highlighting the broader utility of the proposed method.

Exploring Radiologists' Use of AI Chatbots for Assistance in Image Interpretation: Patterns of Use and Trust Evaluation.

Alarifi M

pubmed logopapersAug 13 2025
This study investigated radiologists' perceptions of AI-generated, patient-friendly radiology reports across three modalities: MRI, CT, and mammogram/ultrasound. The evaluation focused on report correctness, completeness, terminology complexity, and emotional impact. Seventy-nine radiologists from four major Saudi Arabian hospitals assessed AI-simplified versions of clinical radiology reports. Each participant reviewed one report from each modality and completed a structured questionnaire covering factual correctness, completeness, terminology complexity, and emotional impact. A structured and detailed prompt was used to guide ChatGPT-4 in generating the reports, which included clear findings, a lay summary, glossary, and clarification of ambiguous elements. Statistical analyses included descriptive summaries, Friedman tests, and Pearson correlations. Radiologists rated mammogram reports highest for correctness (M = 4.22), followed by CT (4.05) and MRI (3.95). Completeness scores followed a similar trend. Statistically significant differences were found in correctness (χ<sup>2</sup>(2) = 17.37, p < 0.001) and completeness (χ<sup>2</sup>(2) = 13.13, p = 0.001). Anxiety and complexity ratings were moderate, with MRI reports linked to slightly higher concern. A weak positive correlation emerged between radiologists' experience and mammogram correctness ratings (r = .235, p = .037). Radiologists expressed overall support for AI-generated simplified radiology reports when created using a structured prompt that includes summaries, glossaries, and clarification of ambiguous findings. While mammography and CT reports were rated favorably, MRI reports showed higher emotional impact, highlighting a need for clearer and more emotionally supportive language.

BSA-Net: Boundary-prioritized spatial adaptive network for efficient left atrial segmentation.

Xu F, Tu W, Feng F, Yang J, Gunawardhana M, Gu Y, Huang J, Zhao J

pubmed logopapersAug 13 2025
Atrial fibrillation, a common cardiac arrhythmia with rapid and irregular atrial electrical activity, requires accurate left atrial segmentation for effective treatment planning. Recently, deep learning methods have gained encouraging success in left atrial segmentation. However, current methodologies critically depend on the assumption of consistently complete centered left atrium as input, which neglects the structural incompleteness and boundary discontinuities arising from random-crop operations during inference. In this paper, we propose BSA-Net, which exploits an adaptive adjustment strategy in both feature position and loss optimization to establish long-range feature relationships and strengthen robust intermediate feature representations in boundary regions. Specifically, we propose a Spatial-adaptive Convolution (SConv) that employs a shuffle operation combined with lightweight convolution to directly establish cross-positional relationships within regions of potential relevance. Moreover, we develop the dual Boundary Prioritized loss, which enhances boundary precision by differentially weighting foreground and background boundaries, thus optimizing complex boundary regions. With the above technologies, the proposed method enjoys a better speed-accuracy trade-off compared to current methods. BSA-Net attains Dice scores of 92.55%, 91.42%, and 84.67% on the LA, Utah, and Waikato datasets, respectively, with a mere 2.16 M parameters-approximately 80% fewer than other contemporary state-of-the-art models. Extensive experimental results on three benchmark datasets have demonstrated that BSA-Net, consistently and significantly outperforms existing state-of-the-art methods.

From Promise to Practical Reality: Transforming Diffusion MRI Analysis with Fast Deep Learning Enhancement

Xinyi Wang, Michael Barnett, Frederique Boonstra, Yael Barnett, Mariano Cabezas, Arkiev D'Souza, Matthew C. Kiernan, Kain Kyle, Meng Law, Lynette Masters, Zihao Tang, Stephen Tisch, Sicong Tu, Anneke Van Der Walt, Dongang Wang, Fernando Calamante, Weidong Cai, Chenyu Wang

arxiv logopreprintAug 13 2025
Fiber orientation distribution (FOD) is an advanced diffusion MRI modeling technique that represents complex white matter fiber configurations, and a key step for subsequent brain tractography and connectome analysis. Its reliability and accuracy, however, heavily rely on the quality of the MRI acquisition and the subsequent estimation of the FODs at each voxel. Generating reliable FODs from widely available clinical protocols with single-shell and low-angular-resolution acquisitions remains challenging but could potentially be addressed with recent advances in deep learning-based enhancement techniques. Despite advancements, existing methods have predominantly been assessed on healthy subjects, which have proved to be a major hurdle for their clinical adoption. In this work, we validate a newly optimized enhancement framework, FastFOD-Net, across healthy controls and six neurological disorders. This accelerated end-to-end deep learning framework enhancing FODs with superior performance and delivering training/inference efficiency for clinical use ($60\times$ faster comparing to its predecessor). With the most comprehensive clinical evaluation to date, our work demonstrates the potential of FastFOD-Net in accelerating clinical neuroscience research, empowering diffusion MRI analysis for disease differentiation, improving interpretability in connectome applications, and reducing measurement errors to lower sample size requirements. Critically, this work will facilitate the more widespread adoption of, and build clinical trust in, deep learning based methods for diffusion MRI enhancement. Specifically, FastFOD-Net enables robust analysis of real-world, clinical diffusion MRI data, comparable to that achievable with high-quality research acquisitions.

Applications of artificial intelligence in liver cancer: A scoping review.

Chierici A, Lareyre F, Iannelli A, Salucki B, Goffart S, Guzzi L, Poggi E, Delingette H, Raffort J

pubmed logopapersAug 13 2025
This review explores the application of Artificial Intelligence (AI) in managing primary liver cancer, focusing on recent advancements. AI, particularly machine learning (ML) and deep learning (DL), shows potential in improving screening, diagnosis, treatment planning, efficacy assessment, prognosis prediction, and follow-up-crucial elements given the high mortality of liver cancer. A systematic search was conducted in the PubMed, Scopus, Embase, and Web of Science databases, focusing on original research published until June 2024 on AI's clinical applications in liver cancer. Studies not relevant or lacking clinical evaluation were excluded. Out of 13,122 screened articles, 62 were selected for full review. The studies highlight significant improvements in detecting hepatocellular carcinoma and intrahepatic cholangiocarcinoma through AI. DL models show high sensitivity and specificity, particularly in early detection. In diagnosis, AI models using CT and MRI data improve precision in distinguishing benign from malignant lesions through multimodal data integration. Recent AI models outperform earlier non-neural network versions, though a gap remains between development and clinical implementation. Many models lack thorough clinical applicability assessments and external validation. AI integration in primary liver cancer management is promising but requires rigorous development and validation practices to enhance clinical outcomes fully.

Exploring the robustness of TractOracle methods in RL-based tractography.

Levesque J, Théberge A, Descoteaux M, Jodoin PM

pubmed logopapersAug 13 2025
Tractography algorithms leverage diffusion MRI to reconstruct the fibrous architecture of the brain's white matter. Among machine learning approaches, reinforcement learning (RL) has emerged as a promising framework for tractography, outperforming traditional methods in several key aspects. TractOracle-RL, a recent RL-based approach, reduces false positives by incorporating anatomical priors into the training process via a reward-based mechanism. In this paper, we investigate four extensions of the original TractOracle-RL framework by integrating recent advances in RL, and we evaluate their performance across five diverse diffusion MRI datasets. Results demonstrate that combining an oracle with the RL framework consistently leads to robust and reliable tractography, regardless of the specific method or dataset used. We also introduce a novel RL training scheme called Iterative Reward Training (IRT), inspired by the Reinforcement Learning from Human Feedback (RLHF) paradigm. Instead of relying on human input, IRT leverages bundle filtering methods to iteratively refine the oracle's guidance throughout training. Experimental results show that RL methods trained with oracle feedback significantly outperform widely used tractography techniques in terms of accuracy and anatomical validity.

Comparative evaluation of CAM methods for enhancing explainability in veterinary radiography.

Dusza P, Banzato T, Burti S, Bendazzoli M, Müller H, Wodzinski M

pubmed logopapersAug 13 2025
Explainable Artificial Intelligence (XAI) encompasses a broad spectrum of methods that aim to enhance the transparency of deep learning models, with Class Activation Mapping (CAM) methods widely used for visual interpretability. However, systematic evaluations of these methods in veterinary radiography remain scarce. This study presents a comparative analysis of eleven CAM methods, including GradCAM, XGradCAM, ScoreCAM, and EigenCAM, on a dataset of 7362 canine and feline X-ray images. A ResNet18 model was chosen based on the specificity of the dataset and preliminary results where it outperformed other models. Quantitative and qualitative evaluations were performed to determine how well each CAM method produced interpretable heatmaps relevant to clinical decision-making. Among the techniques evaluated, EigenGradCAM achieved the highest mean score and standard deviation (SD) of 2.571 (SD = 1.256), closely followed by EigenCAM at 2.519 (SD = 1.228) and GradCAM++ at 2.512 (SD = 1.277), with methods such as FullGrad and XGradCAM achieving worst scores of 2.000 (SD = 1.300) and 1.858 (SD = 1.198) respectively. Despite variations in saliency visualization, no single method universally improved veterinarians' diagnostic confidence. While certain CAM methods provide better visual cues for some pathologies, they generally offered limited explainability and didn't substantially improve veterinarians' diagnostic confidence.

Development and validation of machine learning models to predict vertebral artery injury by C2 pedicle screws.

Ye B, Sun Y, Chen G, Wang B, Meng H, Shan L

pubmed logopapersAug 12 2025
Cervical 2 pedicle screw (C2PS) fixation is widely used in posterior cervical surgery but carries risks of vertebral artery injury (VAI), a rare yet severe complication. This study aimed to identify risk factors for VAI during C2PS placement and develop a machine learning (ML)-based predictive model to enhance preoperative risk assessment. Clinical and radiological data from 280 patients undergoing head and neck CT angiography were retrospectively analyzed. Three-dimensional reconstructed images simulated C2PS placement, classifying patients into injury (n = 98) and non-injury (n = 182) groups. Fifteen variables, including characteristic of patients and anatomic variables were evaluated. Eight ML algorithms were trained (70% training cohort) and validated (30% validation cohort). Model performance was assessed using AUC, sensitivity, specificity, and SHAP (SHapley Additive exPlanations) for interpretability. Six key risk factors were identified: pedicle diameter, high-riding vertebral artery (HRVA), intra-axial vertebral artery (IAVA), vertebral artery diameter (VAD), distance between the transverse foramen and the posterior end of the vertebral body (TFPEVB) and distance between the vertebral artery and the vertebral body (VAVB). The neural network model (NNet) demonstrated optimal predictive performance, achieving AUCs of 0.929 (training) and 0.936 (validation). SHAP analysis confirmed these variables as primary contributors to VAI risk. This study established an ML-driven predictive model for VAI during C2PS placement, highlighting six critical anatomical and radiological risk factors. Integrating this model into clinical workflows may optimize preoperative planning, reduce complications, and improve surgical outcomes. External validation in multicenter cohorts is warranted to enhance generalizability.

Results of the 9th Scientific Workshop of the European Crohn's and Colitis Organisation (ECCO): Artificial Intelligence in Endoscopy, Radiology and Histology in IBD Diagnostics.

Mookhoek A, Sinonque P, Allocca M, Carter D, Ensari A, Iacucci M, Kopylov U, Verstockt B, Baumgart DC, Noor NM, El-Hussuna A, Sahnan K, Marigorta UM, Noviello D, Bossuyt P, Pellino G, Soriano A, de Laffolie J, Daperno M, Raine T, Cleynen I, Sebastian S

pubmed logopapersAug 12 2025
In this review, a comprehensive overview of the current state of artificial intelligence (AI) research in Inflammatory Bowel Disease (IBD) diagnostics in the domains of endoscopy, radiology and histology is presented. Moreover, key considerations for development of AI algorithms in medical image analysis are discussed. AI presents a potential breakthrough in real-time, objective and rapid endoscopic assessment, with implications for predicting disease progression. It is anticipated that, by harmonising multimodal data, AI will transform patient care through early diagnosis, accurate patient profiling and therapeutic response prediction. The ability of AI in cross-sectional medical imaging to improve diagnostic accuracy, automate and enable objective assessment of disease activity and predict clinical outcomes highlights its transformative potential. AI models have consistently outperformed traditional methods of image interpretation, particularly in complex areas such as differentiating IBD subtypes, identifying disease progression and complications. The use of AI in histology is a particularly dynamic research field. Implementation of AI algorithms in clinical practice is still lagging, a major hurdle being the lack of a digital workflow in many pathology institutes. Adoption is likely to start with implementation of automatic disease activity scoring. Beyond matching pathologist performance, algorithms may teach us more about IBD pathophysiology. While AI is set to substantially advance IBD diagnostics, various challenges such as heterogeneous datasets, retrospective designs and assessment of different endpoints must be addressed. Implementation of novel standards of reporting may drive an increase in research quality and overcome these obstacles.
Page 28 of 3503499 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.