Development and validation of machine learning models to predict vertebral artery injury by C2 pedicle screws.
Authors
Affiliations (4)
Affiliations (4)
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Shaanxi, China.
- Yan'an University, Yan'an, China.
- Department of Orthopedics, Chongqing Kaizhou District People's Hospital of Chongqing, Shaanxi, China.
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Shaanxi, China. [email protected].
Abstract
Cervical 2 pedicle screw (C2PS) fixation is widely used in posterior cervical surgery but carries risks of vertebral artery injury (VAI), a rare yet severe complication. This study aimed to identify risk factors for VAI during C2PS placement and develop a machine learning (ML)-based predictive model to enhance preoperative risk assessment. Clinical and radiological data from 280 patients undergoing head and neck CT angiography were retrospectively analyzed. Three-dimensional reconstructed images simulated C2PS placement, classifying patients into injury (n = 98) and non-injury (n = 182) groups. Fifteen variables, including characteristic of patients and anatomic variables were evaluated. Eight ML algorithms were trained (70% training cohort) and validated (30% validation cohort). Model performance was assessed using AUC, sensitivity, specificity, and SHAP (SHapley Additive exPlanations) for interpretability. Six key risk factors were identified: pedicle diameter, high-riding vertebral artery (HRVA), intra-axial vertebral artery (IAVA), vertebral artery diameter (VAD), distance between the transverse foramen and the posterior end of the vertebral body (TFPEVB) and distance between the vertebral artery and the vertebral body (VAVB). The neural network model (NNet) demonstrated optimal predictive performance, achieving AUCs of 0.929 (training) and 0.936 (validation). SHAP analysis confirmed these variables as primary contributors to VAI risk. This study established an ML-driven predictive model for VAI during C2PS placement, highlighting six critical anatomical and radiological risk factors. Integrating this model into clinical workflows may optimize preoperative planning, reduce complications, and improve surgical outcomes. External validation in multicenter cohorts is warranted to enhance generalizability.