Sort by:
Page 272 of 3423416 results

Menopausal hormone therapy and the female brain: Leveraging neuroimaging and prescription registry data from the UK Biobank cohort.

Barth C, Galea LAM, Jacobs EG, Lee BH, Westlye LT, de Lange AG

pubmed logopapersMay 29 2025
Menopausal hormone therapy (MHT) is generally thought to be neuroprotective, yet results have been inconsistent. Here, we present a comprehensive study of MHT use and brain characteristics in females from the UK Biobank. 19,846 females with magnetic resonance imaging data were included. Detailed MHT prescription data from primary care records was available for 538. We tested for associations between the brain measures (i.e. gray/white matter brain age, hippocampal volumes, white matter hyperintensity volumes) and MHT user status, age at first and last use, duration of use, formulation, route of administration, dosage, type, and active ingredient. We further tested for the effects of a history of hysterectomy ± bilateral oophorectomy among MHT users and examined associations by APOE ε4 status. Current MHT users, not past users, showed older gray and white matter brain age, with a difference of up to 9 mo, and smaller hippocampal volumes compared to never-users. Longer duration of use and older age at last use post-menopause was associated with older gray and white matter brain age, larger white matter hyperintensity volume, and smaller hippocampal volumes. MHT users with a history of hysterectomy ± bilateral oophorectomy showed <i>younger</i> gray matter brain age relative to MHT users without such history. We found no associations by APOE ε4 status and with other MHT variables. Our results indicate that population-level associations between MHT use and female brain health might vary depending on duration of use and past surgical history. The authors received funding from the Research Council of Norway (LTW: 223273, 249795, 273345, 298646, 300768), the South-Eastern Norway Regional Health Authority (CB: 2023037, 2022103; LTW: 2018076, 2019101), the European Research Council under the European Union's Horizon 2020 research and innovation program (LTW: 802998), the Swiss National Science Foundation (AMGdL: PZ00P3_193658), the Canadian Institutes for Health Research (LAMG: PJT-173554), the Treliving Family Chair in Women's Mental Health at the Centre for Addiction and Mental Health (LAMG), womenmind at the Centre for Addiction and Mental Health (LAMG, BHL), the Ann S. Bowers Women's Brain Health Initiative (EGJ), and the National Institutes of Health (EGJ: AG063843).

Predicting abnormal fetal growth using deep learning.

Mikołaj KW, Christensen AN, Taksøe-Vester CA, Feragen A, Petersen OB, Lin M, Nielsen M, Svendsen MBS, Tolsgaard MG

pubmed logopapersMay 29 2025
Ultrasound assessment of fetal size and growth is the mainstay of monitoring fetal well-being during pregnancy, as being small for gestational age (SGA) or large for gestational age (LGA) poses significant risks for both the fetus and the mother. This study aimed to enhance the prediction accuracy of abnormal fetal growth. We developed a deep learning model, trained on a dataset of 433,096 ultrasound images derived from 94,538 examinations conducted on 65,752 patients. The deep learning model performed significantly better in detecting both SGA (58% vs 70%) and LGA compared with the current clinical standard, the Hadlock formula (41% vs 55%), p < 0.001. Additionally, the model estimates were significantly less biased across all demographic and technical variables compared to the Hadlock formula. Incorporating key anatomical features such as cortical structures, liver texture, and skin thickness was likely to be responsible for the improved prediction accuracy observed.

Enhanced Pelvic CT Segmentation via Deep Learning: A Study on Loss Function Effects.

Ghaedi E, Asadi A, Hosseini SA, Arabi H

pubmed logopapersMay 29 2025
Effective radiotherapy planning requires precise delineation of organs at risk (OARs), but the traditional manual method is laborious and subject to variability. This study explores using convolutional neural networks (CNNs) for automating OAR segmentation in pelvic CT images, focusing on the bladder, prostate, rectum, and femoral heads (FHs) as an efficient alternative to manual segmentation. Utilizing the Medical Open Network for AI (MONAI) framework, we implemented and compared U-Net, ResU-Net, SegResNet, and Attention U-Net models and explored different loss functions to enhance segmentation accuracy. Our study involved 240 patients for prostate segmentation and 220 patients for the other organs. The models' performance was evaluated using metrics such as the Dice similarity coefficient (DSC), Jaccard index (JI), and the 95th percentile Hausdorff distance (95thHD), benchmarking the results against expert segmentation masks. SegResNet outperformed all models, achieving DSC values of 0.951 for the bladder, 0.829 for the prostate, 0.860 for the rectum, 0.979 for the left FH, and 0.985 for the right FH (p < 0.05 vs. U-Net and ResU-Net). Attention U-Net also excelled, particularly for bladder and rectum segmentation. Experiments with loss functions on SegResNet showed that Dice loss consistently delivered optimal or equivalent performance across OARs, while DiceCE slightly enhanced prostate segmentation (DSC = 0.845, p = 0.0138). These results indicate that advanced CNNs, especially SegResNet, paired with optimized loss functions, provide a reliable, efficient alternative to manual methods, promising improved precision in radiotherapy planning.

ImmunoDiff: A Diffusion Model for Immunotherapy Response Prediction in Lung Cancer

Moinak Bhattacharya, Judy Huang, Amna F. Sher, Gagandeep Singh, Chao Chen, Prateek Prasanna

arxiv logopreprintMay 29 2025
Accurately predicting immunotherapy response in Non-Small Cell Lung Cancer (NSCLC) remains a critical unmet need. Existing radiomics and deep learning-based predictive models rely primarily on pre-treatment imaging to predict categorical response outcomes, limiting their ability to capture the complex morphological and textural transformations induced by immunotherapy. This study introduces ImmunoDiff, an anatomy-aware diffusion model designed to synthesize post-treatment CT scans from baseline imaging while incorporating clinically relevant constraints. The proposed framework integrates anatomical priors, specifically lobar and vascular structures, to enhance fidelity in CT synthesis. Additionally, we introduce a novel cbi-Adapter, a conditioning module that ensures pairwise-consistent multimodal integration of imaging and clinical data embeddings, to refine the generative process. Additionally, a clinical variable conditioning mechanism is introduced, leveraging demographic data, blood-based biomarkers, and PD-L1 expression to refine the generative process. Evaluations on an in-house NSCLC cohort treated with immune checkpoint inhibitors demonstrate a 21.24% improvement in balanced accuracy for response prediction and a 0.03 increase in c-index for survival prediction. Code will be released soon.

DeepChest: Dynamic Gradient-Free Task Weighting for Effective Multi-Task Learning in Chest X-ray Classification

Youssef Mohamed, Noran Mohamed, Khaled Abouhashad, Feilong Tang, Sara Atito, Shoaib Jameel, Imran Razzak, Ahmed B. Zaky

arxiv logopreprintMay 29 2025
While Multi-Task Learning (MTL) offers inherent advantages in complex domains such as medical imaging by enabling shared representation learning, effectively balancing task contributions remains a significant challenge. This paper addresses this critical issue by introducing DeepChest, a novel, computationally efficient and effective dynamic task-weighting framework specifically designed for multi-label chest X-ray (CXR) classification. Unlike existing heuristic or gradient-based methods that often incur substantial overhead, DeepChest leverages a performance-driven weighting mechanism based on effective analysis of task-specific loss trends. Given a network architecture (e.g., ResNet18), our model-agnostic approach adaptively adjusts task importance without requiring gradient access, thereby significantly reducing memory usage and achieving a threefold increase in training speed. It can be easily applied to improve various state-of-the-art methods. Extensive experiments on a large-scale CXR dataset demonstrate that DeepChest not only outperforms state-of-the-art MTL methods by 7% in overall accuracy but also yields substantial reductions in individual task losses, indicating improved generalization and effective mitigation of negative transfer. The efficiency and performance gains of DeepChest pave the way for more practical and robust deployment of deep learning in critical medical diagnostic applications. The code is publicly available at https://github.com/youssefkhalil320/DeepChest-MTL

Comparing the Effects of Persistence Barcodes Aggregation and Feature Concatenation on Medical Imaging

Dashti A. Ali, Richard K. G. Do, William R. Jarnagin, Aras T. Asaad, Amber L. Simpson

arxiv logopreprintMay 29 2025
In medical image analysis, feature engineering plays an important role in the design and performance of machine learning models. Persistent homology (PH), from the field of topological data analysis (TDA), demonstrates robustness and stability to data perturbations and addresses the limitation from traditional feature extraction approaches where a small change in input results in a large change in feature representation. Using PH, we store persistent topological and geometrical features in the form of the persistence barcode whereby large bars represent global topological features and small bars encapsulate geometrical information of the data. When multiple barcodes are computed from 2D or 3D medical images, two approaches can be used to construct the final topological feature vector in each dimension: aggregating persistence barcodes followed by featurization or concatenating topological feature vectors derived from each barcode. In this study, we conduct a comprehensive analysis across diverse medical imaging datasets to compare the effects of the two aforementioned approaches on the performance of classification models. The results of this analysis indicate that feature concatenation preserves detailed topological information from individual barcodes, yields better classification performance and is therefore a preferred approach when conducting similar experiments.

Comparative assessment of fairness definitions and bias mitigation strategies in machine learning-based diagnosis of Alzheimer's disease from MR images

Maria Eleftheria Vlontzou, Maria Athanasiou, Christos Davatzikos, Konstantina S. Nikita

arxiv logopreprintMay 29 2025
The present study performs a comprehensive fairness analysis of machine learning (ML) models for the diagnosis of Mild Cognitive Impairment (MCI) and Alzheimer's disease (AD) from MRI-derived neuroimaging features. Biases associated with age, race, and gender in a multi-cohort dataset, as well as the influence of proxy features encoding these sensitive attributes, are investigated. The reliability of various fairness definitions and metrics in the identification of such biases is also assessed. Based on the most appropriate fairness measures, a comparative analysis of widely used pre-processing, in-processing, and post-processing bias mitigation strategies is performed. Moreover, a novel composite measure is introduced to quantify the trade-off between fairness and performance by considering the F1-score and the equalized odds ratio, making it appropriate for medical diagnostic applications. The obtained results reveal the existence of biases related to age and race, while no significant gender bias is observed. The deployed mitigation strategies yield varying improvements in terms of fairness across the different sensitive attributes and studied subproblems. For race and gender, Reject Option Classification improves equalized odds by 46% and 57%, respectively, and achieves harmonic mean scores of 0.75 and 0.80 in the MCI versus AD subproblem, whereas for age, in the same subproblem, adversarial debiasing yields the highest equalized odds improvement of 40% with a harmonic mean score of 0.69. Insights are provided into how variations in AD neuropathology and risk factors, associated with demographic characteristics, influence model fairness.

Self-supervised feature learning for cardiac Cine MR image reconstruction

Siying Xu, Marcel Früh, Kerstin Hammernik, Andreas Lingg, Jens Kübler, Patrick Krumm, Daniel Rueckert, Sergios Gatidis, Thomas Küstner

arxiv logopreprintMay 29 2025
We propose a self-supervised feature learning assisted reconstruction (SSFL-Recon) framework for MRI reconstruction to address the limitation of existing supervised learning methods. Although recent deep learning-based methods have shown promising performance in MRI reconstruction, most require fully-sampled images for supervised learning, which is challenging in practice considering long acquisition times under respiratory or organ motion. Moreover, nearly all fully-sampled datasets are obtained from conventional reconstruction of mildly accelerated datasets, thus potentially biasing the achievable performance. The numerous undersampled datasets with different accelerations in clinical practice, hence, remain underutilized. To address these issues, we first train a self-supervised feature extractor on undersampled images to learn sampling-insensitive features. The pre-learned features are subsequently embedded in the self-supervised reconstruction network to assist in removing artifacts. Experiments were conducted retrospectively on an in-house 2D cardiac Cine dataset, including 91 cardiovascular patients and 38 healthy subjects. The results demonstrate that the proposed SSFL-Recon framework outperforms existing self-supervised MRI reconstruction methods and even exhibits comparable or better performance to supervised learning up to $16\times$ retrospective undersampling. The feature learning strategy can effectively extract global representations, which have proven beneficial in removing artifacts and increasing generalization ability during reconstruction.

Interpreting Chest X-rays Like a Radiologist: A Benchmark with Clinical Reasoning

Jinquan Guan, Qi Chen, Lizhou Liang, Yuhang Liu, Vu Minh Hieu Phan, Minh-Son To, Jian Chen, Yutong Xie

arxiv logopreprintMay 29 2025
Artificial intelligence (AI)-based chest X-ray (CXR) interpretation assistants have demonstrated significant progress and are increasingly being applied in clinical settings. However, contemporary medical AI models often adhere to a simplistic input-to-output paradigm, directly processing an image and an instruction to generate a result, where the instructions may be integral to the model's architecture. This approach overlooks the modeling of the inherent diagnostic reasoning in chest X-ray interpretation. Such reasoning is typically sequential, where each interpretive stage considers the images, the current task, and the contextual information from previous stages. This oversight leads to several shortcomings, including misalignment with clinical scenarios, contextless reasoning, and untraceable errors. To fill this gap, we construct CXRTrek, a new multi-stage visual question answering (VQA) dataset for CXR interpretation. The dataset is designed to explicitly simulate the diagnostic reasoning process employed by radiologists in real-world clinical settings for the first time. CXRTrek covers 8 sequential diagnostic stages, comprising 428,966 samples and over 11 million question-answer (Q&A) pairs, with an average of 26.29 Q&A pairs per sample. Building on the CXRTrek dataset, we propose a new vision-language large model (VLLM), CXRTrekNet, specifically designed to incorporate the clinical reasoning flow into the VLLM framework. CXRTrekNet effectively models the dependencies between diagnostic stages and captures reasoning patterns within the radiological context. Trained on our dataset, the model consistently outperforms existing medical VLLMs on the CXRTrek benchmarks and demonstrates superior generalization across multiple tasks on five diverse external datasets. The dataset and model can be found in our repository (https://github.com/guanjinquan/CXRTrek).

Deep Modeling and Optimization of Medical Image Classification

Yihang Wu, Muhammad Owais, Reem Kateb, Ahmad Chaddad

arxiv logopreprintMay 29 2025
Deep models, such as convolutional neural networks (CNNs) and vision transformer (ViT), demonstrate remarkable performance in image classification. However, those deep models require large data to fine-tune, which is impractical in the medical domain due to the data privacy issue. Furthermore, despite the feasible performance of contrastive language image pre-training (CLIP) in the natural domain, the potential of CLIP has not been fully investigated in the medical field. To face these challenges, we considered three scenarios: 1) we introduce a novel CLIP variant using four CNNs and eight ViTs as image encoders for the classification of brain cancer and skin cancer, 2) we combine 12 deep models with two federated learning techniques to protect data privacy, and 3) we involve traditional machine learning (ML) methods to improve the generalization ability of those deep models in unseen domain data. The experimental results indicate that maxvit shows the highest averaged (AVG) test metrics (AVG = 87.03\%) in HAM10000 dataset with multimodal learning, while convnext\_l demonstrates remarkable test with an F1-score of 83.98\% compared to swin\_b with 81.33\% in FL model. Furthermore, the use of support vector machine (SVM) can improve the overall test metrics with AVG of $\sim 2\%$ for swin transformer series in ISIC2018. Our codes are available at https://github.com/AIPMLab/SkinCancerSimulation.
Page 272 of 3423416 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.