Sort by:
Page 27 of 1291284 results

Multi-modal and Multi-view Cervical Spondylosis Imaging Dataset.

Yu QS, Shan JY, Ma J, Gao G, Tao BZ, Qiao GY, Zhang JN, Wang T, Zhao YF, Qin XL, Yin YH

pubmed logopapersJul 1 2025
Multi-modal and multi-view imaging is essential for diagnosis and assessment of cervical spondylosis. Deep learning has increasingly been developed to assist in diagnosis and assessment, which can help improve clinical management and provide new ideas for clinical research. To support the development and testing of deep learning models for cervical spondylosis, we have publicly shared a multi-modal and multi-view imaging dataset of cervical spondylosis, named MMCSD. This dataset comprises MRI and CT images from 250 patients. It includes axial bone and soft tissue window CT scans, sagittal T1-weighted and T2-weighted MRI, as well as axial T2-weighted MRI. Neck pain is one of the most common symptoms of cervical spondylosis. We use the MMCSD to develop a deep learning model for predicting postoperative neck pain in patients with cervical spondylosis, thereby validating its usability. We hope that the MMCSD will contribute to the advancement of neural network models for cervical spondylosis and neck pain, further optimizing clinical diagnostic assessments and treatment decision-making for these conditions.

Brain structural features with functional priori to classify Parkinson's disease and multiple system atrophy using diagnostic MRI.

Zhou K, Li J, Huang R, Yu J, Li R, Liao W, Lu F, Hu X, Chen H, Gao Q

pubmed logopapersJul 1 2025
Clinical two-dimensional (2D) MRI data has seen limited application in the early diagnosis of Parkinson's disease (PD) and multiple system atrophy (MSA) due to quality limitations, yet its diagnostic and therapeutic potential remains underexplored. This study presents a novel machine learning framework using reconstructed clinical images to accurately distinguish PD from MSA and identify disease-specific neuroimaging biomarkers. The structure constrained super-resolution network (SCSRN) algorithm was employed to reconstruct clinical 2D MRI data for 56 PD and 58 MSA patients. Features were derived from a functional template, and hierarchical SHAP-based feature selection improved model accuracy and interpretability. In the test set, the Extra Trees and logistic regression models based on the functional template demonstrated an improved accuracy rate of 95.65% and an AUC of 99%. The positive and negative impacts of various features predicting PD and MSA were clarified, with larger fourth ventricular and smaller brainstem volumes being most significant. The proposed framework provides new insights into the comprehensive utilization of clinical 2D MRI images to explore underlying neuroimaging biomarkers that can distinguish between PD and MSA, highlighting disease-specific alterations in brain morphology observed in these conditions.

Machine learning for Parkinson's disease: a comprehensive review of datasets, algorithms, and challenges.

Shokrpour S, MoghadamFarid A, Bazzaz Abkenar S, Haghi Kashani M, Akbari M, Sarvizadeh M

pubmed logopapersJul 1 2025
Parkinson's disease (PD) is a devastating neurological ailment affecting both mobility and cognitive function, posing considerable problems to the health of the elderly across the world. The absence of a conclusive treatment underscores the requirement to investigate cutting-edge diagnostic techniques to improve patient outcomes. Machine learning (ML) has the potential to revolutionize PD detection by applying large repositories of structured data to enhance diagnostic accuracy. 133 papers published between 2021 and April 2024 were reviewed using a systematic literature review (SLR) methodology, and subsequently classified into five categories: acoustic data, biomarkers, medical imaging, movement data, and multimodal datasets. This comprehensive analysis offers valuable insights into the applications of ML in PD diagnosis. Our SLR identifies the datasets and ML algorithms used for PD diagnosis, as well as their merits, limitations, and evaluation factors. We also discuss challenges, future directions, and outstanding issues.

Transformer-based skeletal muscle deep-learning model for survival prediction in gastric cancer patients after curative resection.

Chen Q, Jian L, Xiao H, Zhang B, Yu X, Lai B, Wu X, You J, Jin Z, Yu L, Zhang S

pubmed logopapersJul 1 2025
We developed and evaluated a skeletal muscle deep-learning (SMDL) model using skeletal muscle computed tomography (CT) imaging to predict the survival of patients with gastric cancer (GC). This multicenter retrospective study included patients who underwent curative resection of GC between April 2008 and December 2020. Preoperative CT images at the third lumbar vertebra were used to develop a Transformer-based SMDL model for predicting recurrence-free survival (RFS) and disease-specific survival (DSS). The predictive performance of the SMDL model was assessed using the area under the curve (AUC) and benchmarked against both alternative artificial intelligence models and conventional body composition parameters. The association between the model score and survival was assessed using Cox regression analysis. An integrated model combining SMDL signature with clinical variables was constructed, and its discrimination and fairness were evaluated. A total of 1242, 311, and 94 patients were assigned to the training, internal, and external validation cohorts, respectively. The Transformer-based SMDL model yielded AUCs of 0.791-0.943 for predicting RFS and DSS across all three cohorts and significantly outperformed other models and body composition parameters. The model score was a strong independent prognostic factor for survival. Incorporating the SMDL signature into the clinical model resulted in better prognostic prediction performance. The false-negative and false-positive rates of the integrated model were similar across sex and age subgroups, indicating robust fairness. The Transformer-based SMDL model could accurately predict survival of GC and identify patients at high risk of recurrence or death, thereby assisting clinical decision-making.

Transformer attention fusion for fine grained medical image classification.

Badar D, Abbas J, Alsini R, Abbas T, ChengLiang W, Daud A

pubmed logopapersJul 1 2025
Fine-grained visual classification is fundamental for medical image applications because it detects minor lesions. Diabetic retinopathy (DR) is a preventable cause of blindness, which requires exact and timely diagnosis to prevent vision damage. The challenges automated DR classification systems face include irregular lesions, uneven distributions between image classes, and inconsistent image quality that reduces diagnostic accuracy during early detection stages. Our solution to these problems includes MSCAS-Net (Multi-Scale Cross and Self-Attention Network), which uses the Swin Transformer as the backbone. It extracts features at three different resolutions (12 × 12, 24 × 24, 48 × 48), allowing it to detect subtle local features and global elements. This model uses self-attention mechanics to improve spatial connections between single scales and cross-attention to automatically match feature patterns across multiple scales, thereby developing a comprehensive information structure. The model becomes better at detecting significant lesions because of its dual mechanism, which focuses on both attention points. MSCAS-Net displays the best performance on APTOS and DDR and IDRID benchmarks by reaching accuracy levels of 93.8%, 89.80% and 86.70%, respectively. Through its algorithm, the model solves problems with imbalanced datasets and inconsistent image quality without needing data augmentation because it learns stable features. MSCAS-Net demonstrates a breakthrough in automated DR diagnostics since it combines high diagnostic precision with interpretable abilities to become an efficient AI-powered clinical decision support system. The presented research demonstrates how fine-grained visual classification methods benefit detecting and treating DR during its early stages.

Gradual poisoning of a chest x-ray convolutional neural network with an adversarial attack and AI explainability methods.

Lee SB

pubmed logopapersJul 1 2025
Given artificial intelligence's transformative effects, studying safety is important to ensure it is implemented in a beneficial way. Convolutional neural networks are used in radiology research for prediction but can be corrupted through adversarial attacks. This study investigates the effect of an adversarial attack, through poisoned data. To improve generalizability, we create a generic ResNet pneumonia classification model and then use it as an example by subjecting it to BadNets adversarial attacks. The study uses various poisoned datasets of different compositions (2%, 16.7% and 100% ratios of poisoned data) and two different test sets (a normal set of test data and one that contained poisoned images) to study the effects of BadNets. To provide a visual effect of the progressing corruption of the models, SHapley Additive exPlanations (SHAP) were used. As corruption progressed, interval analysis revealed that performance on a valid test set decreased while the model learned to predict better on a poisoned test set. SHAP visualization showed focus on the trigger. In the 16.7% poisoned model, SHAP focus did not fixate on the trigger in the normal test set. Minimal effects were seen in the 2% model. SHAP visualization showed decreasing performance was correlated with increasing focus on the trigger. Corruption could potentially be masked in the 16.7% model unless subjected specifically to poisoned data. A minimum threshold for corruption may exist. The study demonstrates insights that can be further studied in future work and with future models. It also identifies areas of potential intervention for safeguarding models against adversarial attacks.

Ultrasound-based classification of follicular thyroid Cancer using deep convolutional neural networks with transfer learning.

Agyekum EA, Yuzhi Z, Fang Y, Agyekum DN, Wang X, Issaka E, Li C, Shen X, Qian X, Wu X

pubmed logopapersJul 1 2025
This study aimed to develop and validate convolutional neural network (CNN) models for distinguishing follicular thyroid carcinoma (FTC) from follicular thyroid adenoma (FTA). Additionally, this current study compared the performance of CNN models with the American College of Radiology Thyroid Imaging Reporting and Data System (ACR-TIRADS) and Chinese Thyroid Imaging Reporting and Data System (C-TIRADS) ultrasound-based malignancy risk stratification systems. A total of 327 eligible patients with FTC and FTA who underwent preoperative thyroid ultrasound examination were retrospectively enrolled between August 2017, and August 2024. Patients were randomly assigned to a training cohort (n = 263) and a test cohort (n = 64) in an 8:2 ratio using stratified sampling. Five CNN models, including VGG16, ResNet101, MobileNetV2, ResNet152, and ResNet50, pre-trained with ImageNet, were developed and tested to distinguish FTC from FTA. The CNN models exhibited good performance, yielding areas under the receiver operating characteristic curve (AUC) ranging from 0.64 to 0.77. The ResNet152 model demonstrated the highest AUC (0.77; 95% CI, 0.67-0.87) for distinguishing between FTC and FTA. Decision curve and calibration curve analyses demonstrated the models' favorable clinical value and calibration. Furthermore, when comparing the performance of the developed models with that of the C-TIRADS and ACR-TIRADS systems, the models developed in this study demonstrated superior performance. This can potentially guide appropriate management of FTC in patients with follicular neoplasms.

Synthetic Versus Classic Data Augmentation: Impacts on Breast Ultrasound Image Classification.

Medghalchi Y, Zakariaei N, Rahmim A, Hacihaliloglu I

pubmed logopapersJul 1 2025
The effectiveness of deep neural networks (DNNs) for the ultrasound image analysis depends on the availability and accuracy of the training data. However, the large-scale data collection and annotation, particularly in medical fields, is often costly and time consuming, especially when healthcare professionals are already burdened with their clinical responsibilities. Ensuring that a model remains robust across different imaging conditions-such as variations in ultrasound devices and manual transducer operation-is crucial in the ultrasound image analysis. The data augmentation is a widely used solution, as it increases both the size and diversity of datasets, thereby enhancing the generalization performance of DNNs. With the advent of generative networks such as generative adversarial networks (GANs) and diffusion-based models, the synthetic data generation has emerged as a promising augmentation technique. However, comprehensive studies comparing classic and generative method-based augmentation methods are lacking, particularly in ultrasound-based breast cancer imaging, where variability in breast density, tumor morphology, and operator skill poses significant challenges. This study aims to compare the effectiveness of classic and generative network-based data augmentation techniques in improving the performance and robustness of breast ultrasound image classification models. Specifically, we seek to determine whether the computational intensity of generative networks is justified in data augmentation. This analysis will provide valuable insights into the role and benefits of each technique in enhancing the diagnostic accuracy of DNN for breast cancer diagnosis. The code for this work will be available at: ht.tps://github.com/yasamin-med/SCDA.git.

CASCADE-FSL: Few-shot learning for collateral evaluation in ischemic stroke.

Aktar M, Tampieri D, Xiao Y, Rivaz H, Kersten-Oertel M

pubmed logopapersJul 1 2025
Assessing collateral circulation is essential in determining the best treatment for ischemic stroke patients as good collaterals lead to different treatment options, i.e., thrombectomy, whereas poor collaterals can adversely affect the treatment by leading to excess bleeding and eventually death. To reduce inter- and intra-rater variability and save time in radiologist assessments, computer-aided methods, mainly using deep neural networks, have gained popularity. The current literature demonstrates effectiveness when using balanced and extensive datasets in deep learning; however, such data sets are scarce for stroke, and the number of data samples for poor collateral cases is often limited compared to those for good collaterals. We propose a novel approach called CASCADE-FSL to distinguish poor collaterals effectively. Using a small, unbalanced data set, we employ a few-shot learning approach for training using a 2D ResNet-50 as a backbone and designating good and intermediate cases as two normal classes. We identify poor collaterals as anomalies in comparison to the normal classes. Our novel approach achieves an overall accuracy, sensitivity, and specificity of 0.88, 0.88, and 0.89, respectively, demonstrating its effectiveness in addressing the imbalanced dataset challenge and accurately identifying poor collateral circulation cases.

Federated Learning in radiomics: A comprehensive meta-survey on medical image analysis.

Raza A, Guzzo A, Ianni M, Lappano R, Zanolini A, Maggiolini M, Fortino G

pubmed logopapersJul 1 2025
Federated Learning (FL) has emerged as a promising approach for collaborative medical image analysis while preserving data privacy, making it particularly suitable for radiomics tasks. This paper presents a systematic meta-analysis of recent surveys on Federated Learning in Medical Imaging (FL-MI), published in reputable venues over the past five years. We adopt the PRISMA methodology, categorizing and analyzing the existing body of research in FL-MI. Our analysis identifies common trends, challenges, and emerging strategies for implementing FL in medical imaging, including handling data heterogeneity, privacy concerns, and model performance in non-IID settings. The paper also highlights the most widely used datasets and a comparison of adopted machine learning models. Moreover, we examine FL frameworks in FL-MI applications, such as tumor detection, organ segmentation, and disease classification. We identify several research gaps, including the need for more robust privacy protection. Our findings provide a comprehensive overview of the current state of FL-MI and offer valuable directions for future research and development in this rapidly evolving field.
Page 27 of 1291284 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.