Sort by:
Page 26 of 27269 results

Path and Bone-Contour Regularized Unpaired MRI-to-CT Translation

Teng Zhou, Jax Luo, Yuping Sun, Yiheng Tan, Shun Yao, Nazim Haouchine, Scott Raymond

arxiv logopreprintMay 6 2025
Accurate MRI-to-CT translation promises the integration of complementary imaging information without the need for additional imaging sessions. Given the practical challenges associated with acquiring paired MRI and CT scans, the development of robust methods capable of leveraging unpaired datasets is essential for advancing the MRI-to-CT translation. Current unpaired MRI-to-CT translation methods, which predominantly rely on cycle consistency and contrastive learning frameworks, frequently encounter challenges in accurately translating anatomical features that are highly discernible on CT but less distinguishable on MRI, such as bone structures. This limitation renders these approaches less suitable for applications in radiation therapy, where precise bone representation is essential for accurate treatment planning. To address this challenge, we propose a path- and bone-contour regularized approach for unpaired MRI-to-CT translation. In our method, MRI and CT images are projected to a shared latent space, where the MRI-to-CT mapping is modeled as a continuous flow governed by neural ordinary differential equations. The optimal mapping is obtained by minimizing the transition path length of the flow. To enhance the accuracy of translated bone structures, we introduce a trainable neural network to generate bone contours from MRI and implement mechanisms to directly and indirectly encourage the model to focus on bone contours and their adjacent regions. Evaluations conducted on three datasets demonstrate that our method outperforms existing unpaired MRI-to-CT translation approaches, achieving lower overall error rates. Moreover, in a downstream bone segmentation task, our approach exhibits superior performance in preserving the fidelity of bone structures. Our code is available at: https://github.com/kennysyp/PaBoT.

Rethinking Boundary Detection in Deep Learning-Based Medical Image Segmentation

Yi Lin, Dong Zhang, Xiao Fang, Yufan Chen, Kwang-Ting Cheng, Hao Chen

arxiv logopreprintMay 6 2025
Medical image segmentation is a pivotal task within the realms of medical image analysis and computer vision. While current methods have shown promise in accurately segmenting major regions of interest, the precise segmentation of boundary areas remains challenging. In this study, we propose a novel network architecture named CTO, which combines Convolutional Neural Networks (CNNs), Vision Transformer (ViT) models, and explicit edge detection operators to tackle this challenge. CTO surpasses existing methods in terms of segmentation accuracy and strikes a better balance between accuracy and efficiency, without the need for additional data inputs or label injections. Specifically, CTO adheres to the canonical encoder-decoder network paradigm, with a dual-stream encoder network comprising a mainstream CNN stream for capturing local features and an auxiliary StitchViT stream for integrating long-range dependencies. Furthermore, to enhance the model's ability to learn boundary areas, we introduce a boundary-guided decoder network that employs binary boundary masks generated by dedicated edge detection operators to provide explicit guidance during the decoding process. We validate the performance of CTO through extensive experiments conducted on seven challenging medical image segmentation datasets, namely ISIC 2016, PH2, ISIC 2018, CoNIC, LiTS17, and BTCV. Our experimental results unequivocally demonstrate that CTO achieves state-of-the-art accuracy on these datasets while maintaining competitive model complexity. The codes have been released at: https://github.com/xiaofang007/CTO.

Nonperiodic dynamic CT reconstruction using backward-warping INR with regularization of diffeomorphism (BIRD)

Muge Du, Zhuozhao Zheng, Wenying Wang, Guotao Quan, Wuliang Shi, Le Shen, Li Zhang, Liang Li, Yinong Liu, Yuxiang Xing

arxiv logopreprintMay 6 2025
Dynamic computed tomography (CT) reconstruction faces significant challenges in addressing motion artifacts, particularly for nonperiodic rapid movements such as cardiac imaging with fast heart rates. Traditional methods struggle with the extreme limited-angle problems inherent in nonperiodic cases. Deep learning methods have improved performance but face generalization challenges. Recent implicit neural representation (INR) techniques show promise through self-supervised deep learning, but have critical limitations: computational inefficiency due to forward-warping modeling, difficulty balancing DVF complexity with anatomical plausibility, and challenges in preserving fine details without additional patient-specific pre-scans. This paper presents a novel INR-based framework, BIRD, for nonperiodic dynamic CT reconstruction. It addresses these challenges through four key contributions: (1) backward-warping deformation that enables direct computation of each dynamic voxel with significantly reduced computational cost, (2) diffeomorphism-based DVF regularization that ensures anatomically plausible deformations while maintaining representational capacity, (3) motion-compensated analytical reconstruction that enhances fine details without requiring additional pre-scans, and (4) dimensional-reduction design for efficient 4D coordinate encoding. Through various simulations and practical studies, including digital and physical phantoms and retrospective patient data, we demonstrate the effectiveness of our approach for nonperiodic dynamic CT reconstruction with enhanced details and reduced motion artifacts. The proposed framework enables more accurate dynamic CT reconstruction with potential clinical applications, such as one-beat cardiac reconstruction, cinematic image sequences for functional imaging, and motion artifact reduction in conventional CT scans.

Physics-informed neural network estimation of active material properties in time-dependent cardiac biomechanical models

Matthias Höfler, Francesco Regazzoni, Stefano Pagani, Elias Karabelas, Christoph Augustin, Gundolf Haase, Gernot Plank, Federica Caforio

arxiv logopreprintMay 6 2025
Active stress models in cardiac biomechanics account for the mechanical deformation caused by muscle activity, thus providing a link between the electrophysiological and mechanical properties of the tissue. The accurate assessment of active stress parameters is fundamental for a precise understanding of myocardial function but remains difficult to achieve in a clinical setting, especially when only displacement and strain data from medical imaging modalities are available. This work investigates, through an in-silico study, the application of physics-informed neural networks (PINNs) for inferring active contractility parameters in time-dependent cardiac biomechanical models from these types of imaging data. In particular, by parametrising the sought state and parameter field with two neural networks, respectively, and formulating an energy minimisation problem to search for the optimal network parameters, we are able to reconstruct in various settings active stress fields in the presence of noise and with a high spatial resolution. To this end, we also advance the vanilla PINN learning algorithm with the use of adaptive weighting schemes, ad-hoc regularisation strategies, Fourier features, and suitable network architectures. In addition, we thoroughly analyse the influence of the loss weights in the reconstruction of active stress parameters. Finally, we apply the method to the characterisation of tissue inhomogeneities and detection of fibrotic scars in myocardial tissue. This approach opens a new pathway to significantly improve the diagnosis, treatment planning, and management of heart conditions associated with cardiac fibrosis.

A Vision-Language Model for Focal Liver Lesion Classification

Song Jian, Hu Yuchang, Wang Hui, Chen Yen-Wei

arxiv logopreprintMay 6 2025
Accurate classification of focal liver lesions is crucial for diagnosis and treatment in hepatology. However, traditional supervised deep learning models depend on large-scale annotated datasets, which are often limited in medical imaging. Recently, Vision-Language models (VLMs) such as Contrastive Language-Image Pre-training model (CLIP) has been applied to image classifications. Compared to the conventional convolutional neural network (CNN), which classifiers image based on visual information only, VLM leverages multimodal learning with text and images, allowing it to learn effectively even with a limited amount of labeled data. Inspired by CLIP, we pro-pose a Liver-VLM, a model specifically designed for focal liver lesions (FLLs) classification. First, Liver-VLM incorporates class information into the text encoder without introducing additional inference overhead. Second, by calculating the pairwise cosine similarities between image and text embeddings and optimizing the model with a cross-entropy loss, Liver-VLM ef-fectively aligns image features with class-level text features. Experimental results on MPCT-FLLs dataset demonstrate that the Liver-VLM model out-performs both the standard CLIP and MedCLIP models in terms of accuracy and Area Under the Curve (AUC). Further analysis shows that using a lightweight ResNet18 backbone enhances classification performance, particularly under data-constrained conditions.

STG: Spatiotemporal Graph Neural Network with Fusion and Spatiotemporal Decoupling Learning for Prognostic Prediction of Colorectal Cancer Liver Metastasis

Yiran Zhu, Wei Yang, Yan su, Zesheng Li, Chengchang Pan, Honggang Qi

arxiv logopreprintMay 6 2025
We propose a multimodal spatiotemporal graph neural network (STG) framework to predict colorectal cancer liver metastasis (CRLM) progression. Current clinical models do not effectively integrate the tumor's spatial heterogeneity, dynamic evolution, and complex multimodal data relationships, limiting their predictive accuracy. Our STG framework combines preoperative CT imaging and clinical data into a heterogeneous graph structure, enabling joint modeling of tumor distribution and temporal evolution through spatial topology and cross-modal edges. The framework uses GraphSAGE to aggregate spatiotemporal neighborhood information and leverages supervised and contrastive learning strategies to enhance the model's ability to capture temporal features and improve robustness. A lightweight version of the model reduces parameter count by 78.55%, maintaining near-state-of-the-art performance. The model jointly optimizes recurrence risk regression and survival analysis tasks, with contrastive loss improving feature representational discriminability and cross-modal consistency. Experimental results on the MSKCC CRLM dataset show a time-adjacent accuracy of 85% and a mean absolute error of 1.1005, significantly outperforming existing methods. The innovative heterogeneous graph construction and spatiotemporal decoupling mechanism effectively uncover the associations between dynamic tumor microenvironment changes and prognosis, providing reliable quantitative support for personalized treatment decisions.

Comprehensive Cerebral Aneurysm Rupture Prediction: From Clustering to Deep Learning

Zakeri, M., Atef, A., Aziznia, M., Jafari, A.

medrxiv logopreprintMay 6 2025
Cerebral aneurysm is a silent yet prevalent condition that affects a substantial portion of the global population. Aneurysms can develop due to various factors and present differently, necessitating diverse treatment approaches. Choosing the appropriate treatment upon diagnosis is paramount, as the severity of the disease dictates the course of action. The vulnerability of an aneurysm, particularly in the circle of Willis, is a critical concern; rupture can lead to irreversible consequences, including death. The primary objective of this study is to predict the rupture status of cerebral aneurysms using a comprehensive dataset that includes clinical, morphological, and hemodynamic data extracted from blood flow simulations of patients with actual vessels. Our goal is to provide valuable insights that can aid in treatment decision-making and potentially save the lives of future patients. Diagnosing and predicting the rupture status of aneurysms based solely on brain scans poses a significant challenge, often with limited accuracy, even for experienced physicians. However, harnessing statistical and machine learning (ML) techniques can enhance rupture prediction and treatment strategy selection. We employed a diverse set of supervised and unsupervised algorithms, training them on a database comprising over 700 cerebral aneurysms, which included 55 different parameters: 3 clinical, 35 morphological, and 17 hemodynamic features. Two of our models including stochastic gradient descent (SGD) and multi-layer perceptron (MLP) achieved a maximum area under the curve (AUC) of 0.86, a precision rate of 0.86, and a recall rate of 0.90 for prediction of cerebral aneurysm rupture. Given the sensitivity of the data and the critical nature of the condition, recall is a more vital parameter than accuracy and precision; our study achieved an acceptable recall score. Key features for rupture prediction included ellipticity index, low shear area ratio, and irregularity. Additionally, a one-dimensional CNN model predicted rupture status along a continuous spectrum, achieving 0.78 accuracy on the testing dataset, providing nuanced insights into rupture propensity.

Artificial intelligence-based echocardiography assessment to detect pulmonary hypertension.

Salehi M, Alabed S, Sharkey M, Maiter A, Dwivedi K, Yardibi T, Selej M, Hameed A, Charalampopoulos A, Kiely DG, Swift AJ

pubmed logopapersMay 1 2025
Tricuspid regurgitation jet velocity (TRJV) on echocardiography is used for screening patients with suspected pulmonary hypertension (PH). Artificial intelligence (AI) tools, such as the US2.AI, have been developed for automated evaluation of echocardiograms and can yield measurements that aid PH detection. This study evaluated the performance and utility of the US2.AI in a consecutive cohort of patients with suspected PH. 1031 patients who had been investigated for suspected PH between 2009-2021 were retrospectively identified from the ASPIRE registry. All patients had undergone echocardiography and right heart catheterisation (RHC). Based on RHC results, 771 (75%) patients with a mean pulmonary arterial pressure >20 mmHg were classified as having a diagnosis of PH (as per the 2022 European guidelines). Echocardiograms were evaluated manually and by the US2.AI tool to yield TRJV measurements. The AI tool demonstrated high interpretation yield, successfully measuring TRJV in 87% of echocardiograms. Manually and automatically derived TRJV values showed excellent agreement (intraclass correlation coefficient 0.94, 95% CI 0.94-0.95) with minimal bias (Bland-Altman analysis). Automated TRJV measurements showed equally high diagnostic accuracy for PH as manual measurements (area under the curve 0.88, 95% CI 0.84-0.90 <i>versus</i> 0.88, 95% CI 0.86-0.91). Automated TRJV measurements on echocardiography were similar to manual measurements, with similarly high and noninferior diagnostic accuracy for PH. These findings demonstrate that automated measurement of TRJV on echocardiography is feasible, accurate and reliable and support the implementation of AI-based approaches to echocardiogram evaluation and diagnostic imaging for PH.

From manual clinical criteria to machine learning algorithms: Comparing outcome endpoints derived from diverse electronic health record data modalities.

Chappidi S, Belue MJ, Harmon SA, Jagasia S, Zhuge Y, Tasci E, Turkbey B, Singh J, Camphausen K, Krauze AV

pubmed logopapersMay 1 2025
Progression free survival (PFS) is a critical clinical outcome endpoint during cancer management and treatment evaluation. Yet, PFS is often missing from publicly available datasets due to the current subjective, expert, and time-intensive nature of generating PFS metrics. Given emerging research in multi-modal machine learning (ML), we explored the benefits and challenges associated with mining different electronic health record (EHR) data modalities and automating extraction of PFS metrics via ML algorithms. We analyzed EHR data from 92 pathology-proven GBM patients, obtaining 233 corticosteroid prescriptions, 2080 radiology reports, and 743 brain MRI scans. Three methods were developed to derive clinical PFS: 1) frequency analysis of corticosteroid prescriptions, 2) natural language processing (NLP) of reports, and 3) computer vision (CV) volumetric analysis of imaging. Outputs from these methods were compared to manually annotated clinical guideline PFS metrics. Employing data-driven methods, standalone progression rates were 63% (prescription), 78% (NLP), and 54% (CV), compared to the 99% progression rate from manually applied clinical guidelines using integrated data sources. The prescription method identified progression an average of 5.2 months later than the clinical standard, while the CV and NLP algorithms identified progression earlier by 2.6 and 6.9 months, respectively. While lesion growth is a clinical guideline progression indicator, only half of patients exhibited increasing contrast-enhancing tumor volumes during scan-based CV analysis. Our results indicate that data-driven algorithms can extract tumor progression outcomes from existing EHR data. However, ML methods are subject to varying availability bias, supporting contextual information, and pre-processing resource burdens that influence the extracted PFS endpoint distributions. Our scan-based CV results also suggest that the automation of clinical criteria may not align with human intuition. Our findings indicate a need for improved data source integration, validation, and revisiting of clinical criteria in parallel to multi-modal ML algorithm development.

Automated Bi-Ventricular Segmentation and Regional Cardiac Wall Motion Analysis for Rat Models of Pulmonary Hypertension.

Niglas M, Baxan N, Ashek A, Zhao L, Duan J, O'Regan D, Dawes TJW, Nien-Chen C, Xie C, Bai W, Zhao L

pubmed logopapersApr 1 2025
Artificial intelligence-based cardiac motion mapping offers predictive insights into pulmonary hypertension (PH) disease progression and its impact on the heart. We proposed an automated deep learning pipeline for bi-ventricular segmentation and 3D wall motion analysis in PH rodent models for bridging the clinical developments. A data set of 163 short-axis cine cardiac magnetic resonance scans were collected longitudinally from monocrotaline (MCT) and Sugen-hypoxia (SuHx) PH rats and used for training a fully convolutional network for automated segmentation. The model produced an accurate annotation in < 1 s for each scan (Dice metric > 0.92). High-resolution atlas fitting was performed to produce 3D cardiac mesh models and calculate the regional wall motion between end-diastole and end-systole. Prominent right ventricular hypokinesia was observed in PH rats (-37.7% ± 12.2 MCT; -38.6% ± 6.9 SuHx) compared to healthy controls, attributed primarily to the loss in basal longitudinal and apical radial motion. This automated bi-ventricular rat-specific pipeline provided an efficient and novel translational tool for rodent studies in alignment with clinical cardiac imaging AI developments.
Page 26 of 27269 results
Show
per page
Get Started

Upload your X-ray image and get interpretation.

Upload now →

Disclaimer: X-ray Interpreter's AI-generated results are for informational purposes only and not a substitute for professional medical advice. Always consult a healthcare professional for medical diagnosis and treatment.