Sort by:
Page 26 of 3993982 results

Multivariate Fields of Experts

Stanislas Ducotterd, Michael Unser

arxiv logopreprintAug 8 2025
We introduce the multivariate fields of experts, a new framework for the learning of image priors. Our model generalizes existing fields of experts methods by incorporating multivariate potential functions constructed via Moreau envelopes of the $\ell_\infty$-norm. We demonstrate the effectiveness of our proposal across a range of inverse problems that include image denoising, deblurring, compressed-sensing magnetic-resonance imaging, and computed tomography. The proposed approach outperforms comparable univariate models and achieves performance close to that of deep-learning-based regularizers while being significantly faster, requiring fewer parameters, and being trained on substantially fewer data. In addition, our model retains a relatively high level of interpretability due to its structured design.

SPARSE Data, Rich Results: Few-Shot Semi-Supervised Learning via Class-Conditioned Image Translation

Guido Manni, Clemente Lauretti, Loredana Zollo, Paolo Soda

arxiv logopreprintAug 8 2025
Deep learning has revolutionized medical imaging, but its effectiveness is severely limited by insufficient labeled training data. This paper introduces a novel GAN-based semi-supervised learning framework specifically designed for low labeled-data regimes, evaluated across settings with 5 to 50 labeled samples per class. Our approach integrates three specialized neural networks -- a generator for class-conditioned image translation, a discriminator for authenticity assessment and classification, and a dedicated classifier -- within a three-phase training framework. The method alternates between supervised training on limited labeled data and unsupervised learning that leverages abundant unlabeled images through image-to-image translation rather than generation from noise. We employ ensemble-based pseudo-labeling that combines confidence-weighted predictions from the discriminator and classifier with temporal consistency through exponential moving averaging, enabling reliable label estimation for unlabeled data. Comprehensive evaluation across eleven MedMNIST datasets demonstrates that our approach achieves statistically significant improvements over six state-of-the-art GAN-based semi-supervised methods, with particularly strong performance in the extreme 5-shot setting where the scarcity of labeled data is most challenging. The framework maintains its superiority across all evaluated settings (5, 10, 20, and 50 shots per class). Our approach offers a practical solution for medical imaging applications where annotation costs are prohibitive, enabling robust classification performance even with minimal labeled data. Code is available at https://github.com/GuidoManni/SPARSE.

Advanced Deep Learning Techniques for Accurate Lung Cancer Detection and Classification

Mobarak Abumohsen, Enrique Costa-Montenegro, Silvia García-Méndez, Amani Yousef Owda, Majdi Owda

arxiv logopreprintAug 8 2025
Lung cancer (LC) ranks among the most frequently diagnosed cancers and is one of the most common causes of death for men and women worldwide. Computed Tomography (CT) images are the most preferred diagnosis method because of their low cost and their faster processing times. Many researchers have proposed various ways of identifying lung cancer using CT images. However, such techniques suffer from significant false positives, leading to low accuracy. The fundamental reason results from employing a small and imbalanced dataset. This paper introduces an innovative approach for LC detection and classification from CT images based on the DenseNet201 model. Our approach comprises several advanced methods such as Focal Loss, data augmentation, and regularization to overcome the imbalanced data issue and overfitting challenge. The findings show the appropriateness of the proposal, attaining a promising performance of 98.95% accuracy.

An Interpretable Multi-Plane Fusion Framework With Kolmogorov-Arnold Network Guided Attention Enhancement for Alzheimer's Disease Diagnosis

Xiaoxiao Yang, Meiliang Liu, Yunfang Xu, Zijin Li, Zhengye Si, Xinyue Yang, Zhiwen Zhao

arxiv logopreprintAug 8 2025
Alzheimer's disease (AD) is a progressive neurodegenerative disorder that severely impairs cognitive function and quality of life. Timely intervention in AD relies heavily on early and precise diagnosis, which remains challenging due to the complex and subtle structural changes in the brain. Most existing deep learning methods focus only on a single plane of structural magnetic resonance imaging (sMRI) and struggle to accurately capture the complex and nonlinear relationships among pathological regions of the brain, thus limiting their ability to precisely identify atrophic features. To overcome these limitations, we propose an innovative framework, MPF-KANSC, which integrates multi-plane fusion (MPF) for combining features from the coronal, sagittal, and axial planes, and a Kolmogorov-Arnold Network-guided spatial-channel attention mechanism (KANSC) to more effectively learn and represent sMRI atrophy features. Specifically, the proposed model enables parallel feature extraction from multiple anatomical planes, thus capturing more comprehensive structural information. The KANSC attention mechanism further leverages a more flexible and accurate nonlinear function approximation technique, facilitating precise identification and localization of disease-related abnormalities. Experiments on the ADNI dataset confirm that the proposed MPF-KANSC achieves superior performance in AD diagnosis. Moreover, our findings provide new evidence of right-lateralized asymmetry in subcortical structural changes during AD progression, highlighting the model's promising interpretability.

Text Embedded Swin-UMamba for DeepLesion Segmentation

Ruida Cheng, Tejas Sudharshan Mathai, Pritam Mukherjee, Benjamin Hou, Qingqing Zhu, Zhiyong Lu, Matthew McAuliffe, Ronald M. Summers

arxiv logopreprintAug 8 2025
Segmentation of lesions on CT enables automatic measurement for clinical assessment of chronic diseases (e.g., lymphoma). Integrating large language models (LLMs) into the lesion segmentation workflow offers the potential to combine imaging features with descriptions of lesion characteristics from the radiology reports. In this study, we investigate the feasibility of integrating text into the Swin-UMamba architecture for the task of lesion segmentation. The publicly available ULS23 DeepLesion dataset was used along with short-form descriptions of the findings from the reports. On the test dataset, a high Dice Score of 82% and low Hausdorff distance of 6.58 (pixels) was obtained for lesion segmentation. The proposed Text-Swin-UMamba model outperformed prior approaches: 37% improvement over the LLM-driven LanGuideMedSeg model (p < 0.001),and surpassed the purely image-based xLSTM-UNet and nnUNet models by 1.74% and 0.22%, respectively. The dataset and code can be accessed at https://github.com/ruida/LLM-Swin-UMamba

Can Diffusion Models Bridge the Domain Gap in Cardiac MR Imaging?

Xin Ci Wong, Duygu Sarikaya, Kieran Zucker, Marc De Kamps, Nishant Ravikumar

arxiv logopreprintAug 8 2025
Magnetic resonance (MR) imaging, including cardiac MR, is prone to domain shift due to variations in imaging devices and acquisition protocols. This challenge limits the deployment of trained AI models in real-world scenarios, where performance degrades on unseen domains. Traditional solutions involve increasing the size of the dataset through ad-hoc image augmentation or additional online training/transfer learning, which have several limitations. Synthetic data offers a promising alternative, but anatomical/structural consistency constraints limit the effectiveness of generative models in creating image-label pairs. To address this, we propose a diffusion model (DM) trained on a source domain that generates synthetic cardiac MR images that resemble a given reference. The synthetic data maintains spatial and structural fidelity, ensuring similarity to the source domain and compatibility with the segmentation mask. We assess the utility of our generative approach in multi-centre cardiac MR segmentation, using the 2D nnU-Net, 3D nnU-Net and vanilla U-Net segmentation networks. We explore domain generalisation, where, domain-invariant segmentation models are trained on synthetic source domain data, and domain adaptation, where, we shift target domain data towards the source domain using the DM. Both strategies significantly improved segmentation performance on data from an unseen target domain, in terms of surface-based metrics (Welch's t-test, p < 0.01), compared to training segmentation models on real data alone. The proposed method ameliorates the need for transfer learning or online training to address domain shift challenges in cardiac MR image analysis, especially useful in data-scarce settings.

XAG-Net: A Cross-Slice Attention and Skip Gating Network for 2.5D Femur MRI Segmentation

Byunghyun Ko, Anning Tian, Jeongkyu Lee

arxiv logopreprintAug 8 2025
Accurate segmentation of femur structures from Magnetic Resonance Imaging (MRI) is critical for orthopedic diagnosis and surgical planning but remains challenging due to the limitations of existing 2D and 3D deep learning-based segmentation approaches. In this study, we propose XAG-Net, a novel 2.5D U-Net-based architecture that incorporates pixel-wise cross-slice attention (CSA) and skip attention gating (AG) mechanisms to enhance inter-slice contextual modeling and intra-slice feature refinement. Unlike previous CSA-based models, XAG-Net applies pixel-wise softmax attention across adjacent slices at each spatial location for fine-grained inter-slice modeling. Extensive evaluations demonstrate that XAG-Net surpasses baseline 2D, 2.5D, and 3D U-Net models in femur segmentation accuracy while maintaining computational efficiency. Ablation studies further validate the critical role of the CSA and AG modules, establishing XAG-Net as a promising framework for efficient and accurate femur MRI segmentation.

Variational volume reconstruction with the Deep Ritz Method

Conor Rowan, Sumedh Soman, John A. Evans

arxiv logopreprintAug 8 2025
We present a novel approach to variational volume reconstruction from sparse, noisy slice data using the Deep Ritz method. Motivated by biomedical imaging applications such as MRI-based slice-to-volume reconstruction (SVR), our approach addresses three key challenges: (i) the reliance on image segmentation to extract boundaries from noisy grayscale slice images, (ii) the need to reconstruct volumes from a limited number of slice planes, and (iii) the computational expense of traditional mesh-based methods. We formulate a variational objective that combines a regression loss designed to avoid image segmentation by operating on noisy slice data directly with a modified Cahn-Hilliard energy incorporating anisotropic diffusion to regularize the reconstructed geometry. We discretize the phase field with a neural network, approximate the objective at each optimization step with Monte Carlo integration, and use ADAM to find the minimum of the approximated variational objective. While the stochastic integration may not yield the true solution to the variational problem, we demonstrate that our method reliably produces high-quality reconstructed volumes in a matter of seconds, even when the slice data is sparse and noisy.

Vision-Language Model-Based Semantic-Guided Imaging Biomarker for Lung Nodule Malignancy Prediction.

Zhuang L, Tabatabaei SMH, Salehi-Rad R, Tran LM, Aberle DR, Prosper AE, Hsu W

pubmed logopapersAug 8 2025
Machine learning models have utilized semantic features, deep features, or both to assess lung nodule malignancy. However, their reliance on manual annotation during inference, limited interpretability, and sensitivity to imaging variations hinder their application in real-world clinical settings. Thus, this research aims to integrate semantic features derived from radiologists' assessments of nodules, guiding the model to learn clinically relevant, robust, and explainable imaging features for predicting lung cancer. We obtained 938 low-dose CT scans from the National Lung Screening Trial (NLST) with 1,246 nodules and semantic features. Additionally, the Lung Image Database Consortium dataset contains 1,018 CT scans, with 2,625 lesions annotated for nodule characteristics. Three external datasets were obtained from UCLA Health, the LUNGx Challenge, and the Duke Lung Cancer Screening. We fine-tuned a pretrained Contrastive Language-Image Pretraining (CLIP) model with a parameter-efficient fine-tuning approach to align imaging and semantic text features and predict the one-year lung cancer diagnosis. Our model outperformed state-of-the-art (SOTA) models in the NLST test set with an AUROC of 0.901 and AUPRC of 0.776. It also showed robust results in external datasets. Using CLIP, we also obtained predictions on semantic features through zero-shot inference, such as nodule margin (AUROC: 0.812), nodule consistency (0.812), and pleural attachment (0.840). Our approach surpasses the SOTA models in predicting lung cancer across datasets collected from diverse clinical settings, providing explainable outputs, aiding clinicians in comprehending the underlying meaning of model predictions. This approach also prevents the model from learning shortcuts and generalizes across clinical settings. The code is available at https://github.com/luotingzhuang/CLIP_nodule.

impuTMAE: Multi-modal Transformer with Masked Pre-training for Missing Modalities Imputation in Cancer Survival Prediction

Maria Boyko, Aleksandra Beliaeva, Dmitriy Kornilov, Alexander Bernstein, Maxim Sharaev

arxiv logopreprintAug 8 2025
The use of diverse modalities, such as omics, medical images, and clinical data can not only improve the performance of prognostic models but also deepen an understanding of disease mechanisms and facilitate the development of novel treatment approaches. However, medical data are complex, often incomplete, and contains missing modalities, making effective handling its crucial for training multimodal models. We introduce impuTMAE, a novel transformer-based end-to-end approach with an efficient multimodal pre-training strategy. It learns inter- and intra-modal interactions while simultaneously imputing missing modalities by reconstructing masked patches. Our model is pre-trained on heterogeneous, incomplete data and fine-tuned for glioma survival prediction using TCGA-GBM/LGG and BraTS datasets, integrating five modalities: genetic (DNAm, RNA-seq), imaging (MRI, WSI), and clinical data. By addressing missing data during pre-training and enabling efficient resource utilization, impuTMAE surpasses prior multimodal approaches, achieving state-of-the-art performance in glioma patient survival prediction. Our code is available at https://github.com/maryjis/mtcp
Page 26 of 3993982 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.