Sort by:
Page 25 of 25248 results

The Role of Computed Tomography and Artificial Intelligence in Evaluating the Comorbidities of Chronic Obstructive Pulmonary Disease: A One-Stop CT Scanning for Lung Cancer Screening.

Lin X, Zhang Z, Zhou T, Li J, Jin Q, Li Y, Guan Y, Xia Y, Zhou X, Fan L

pubmed logopapersJan 1 2025
Chronic obstructive pulmonary disease (COPD) is a major cause of morbidity and mortality worldwide. Comorbidities in patients with COPD significantly increase morbidity, mortality, and healthcare costs, posing a significant burden on the management of COPD. Given the complex clinical manifestations and varying severity of COPD comorbidities, accurate diagnosis and evaluation are particularly important in selecting appropriate treatment options. With the development of medical imaging technology, AI-based chest CT, as a noninvasive imaging modality, provides a detailed assessment of COPD comorbidities. Recent studies have shown that certain radiographic features on chest CT can be used as alternative markers of comorbidities in COPD patients. CT-based radiomics features provided incremental predictive value than clinical risk factors only, predicting an AUC of 0.73 for COPD combined with CVD. However, AI has inherent limitations such as lack of interpretability, and further research is needed to improve them. This review evaluates the progress of AI technology combined with chest CT imaging in COPD comorbidities, including lung cancer, cardiovascular disease, osteoporosis, sarcopenia, excess adipose depots, and pulmonary hypertension, with the aim of improving the understanding of imaging and the management of COPD comorbidities for the purpose of improving disease screening, efficacy assessment, and prognostic evaluation.

Application of artificial intelligence in X-ray imaging analysis for knee arthroplasty: A systematic review.

Zhang Z, Hui X, Tao H, Fu Z, Cai Z, Zhou S, Yang K

pubmed logopapersJan 1 2025
Artificial intelligence (AI) is a promising and powerful technology with increasing use in orthopedics. The global morbidity of knee arthroplasty is expanding. This study investigated the use of AI algorithms to review radiographs of knee arthroplasty. The Ovid-Embase, Web of Science, Cochrane Library, PubMed, China National Knowledge Infrastructure (CNKI), WeiPu (VIP), WanFang, and China Biology Medicine (CBM) databases were systematically screened from inception to March 2024 (PROSPERO study protocol registration: CRD42024507549). The quality assessment of the diagnostic accuracy studies tool assessed the risk of bias. A total of 21 studies were included in the analysis. Of these, 10 studies identified and classified implant brands, 6 measured implant size and component alignment, 3 detected implant loosening, and 2 diagnosed prosthetic joint infections (PJI). For classifying and identifying implant brands, 5 studies demonstrated near-perfect prediction with an area under the curve (AUC) ranging from 0.98 to 1.0, and 10 achieved accuracy (ACC) between 96-100%. Regarding implant measurement, one study showed an AUC of 0.62, and two others exhibited over 80% ACC in determining component sizes. Moreover, Artificial intelligence showed good to excellent reliability across all angles in three separate studies (Intraclass Correlation Coefficient > 0.78). In predicting PJI, one study achieved an AUC of 0.91 with a corresponding ACC of 90.5%, while another reported a positive predictive value ranging from 75% to 85%. For detecting implant loosening, the AUC was found to be at least as high as 0.976 with ACC ranging from 85.8% to 97.5%. These studies show that AI is promising in recognizing implants in knee arthroplasty. Future research should follow a rigorous approach to AI development, with comprehensive and transparent reporting of methods and the creation of open-source software programs and commercial tools that can provide clinicians with objective clinical decisions.

OA-HybridCNN (OHC): An advanced deep learning fusion model for enhanced diagnostic accuracy in knee osteoarthritis imaging.

Liao Y, Yang G, Pan W, Lu Y

pubmed logopapersJan 1 2025
Knee osteoarthritis (KOA) is a leading cause of disability globally. Early and accurate diagnosis is paramount in preventing its progression and improving patients' quality of life. However, the inconsistency in radiologists' expertise and the onset of visual fatigue during prolonged image analysis often compromise diagnostic accuracy, highlighting the need for automated diagnostic solutions. In this study, we present an advanced deep learning model, OA-HybridCNN (OHC), which integrates ResNet and DenseNet architectures. This integration effectively addresses the gradient vanishing issue in DenseNet and augments prediction accuracy. To evaluate its performance, we conducted a thorough comparison with other deep learning models using five-fold cross-validation and external tests. The OHC model outperformed its counterparts across all performance metrics. In external testing, OHC exhibited an accuracy of 91.77%, precision of 92.34%, and recall of 91.36%. During the five-fold cross-validation, its average AUC and ACC were 86.34% and 87.42%, respectively. Deep learning, particularly exemplified by the OHC model, has greatly improved the efficiency and accuracy of KOA imaging diagnosis. The adoption of such technologies not only alleviates the burden on radiologists but also significantly enhances diagnostic precision.

Comparative analysis of diagnostic performance in mammography: A reader study on the impact of AI assistance.

Ramli Hamid MT, Ab Mumin N, Abdul Hamid S, Mohd Ariffin N, Mat Nor K, Saib E, Mohamed NA

pubmed logopapersJan 1 2025
This study evaluates the impact of artificial intelligence (AI) assistance on the diagnostic performance of radiologists with varying levels of experience in interpreting mammograms in a Malaysian tertiary referral center, particularly in women with dense breasts. A retrospective study including 434 digital mammograms interpreted by two general radiologists (12 and 6 years of experience) and two trainees (2 years of experience). Diagnostic performance was assessed with and without AI assistance (Lunit INSIGHT MMG), using sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), and area under the receiver operating characteristic curve (AUC). Inter-reader agreement was measured using kappa statistics. AI assistance significantly improved the diagnostic performance of all reader groups across all metrics (p < 0.05). The senior radiologist consistently achieved the highest sensitivity (86.5% without AI, 88.0% with AI) and specificity (60.5% without AI, 59.2% with AI). The junior radiologist demonstrated the highest PPV (56.9% without AI, 74.6% with AI) and NPV (90.3% without AI, 92.2% with AI). The trainees showed the lowest performance, but AI significantly enhanced their accuracy. AI assistance was particularly beneficial in interpreting mammograms of women with dense breasts. AI assistance significantly enhances the diagnostic accuracy and consistency of radiologists in mammogram interpretation, with notable benefits for less experienced readers. These findings support the integration of AI into clinical practice, particularly in resource-limited settings where access to specialized breast radiologists is constrained.

Fully automated MRI-based analysis of the locus coeruleus in aging and Alzheimer's disease dementia using ELSI-Net.

Dünnwald M, Krohn F, Sciarra A, Sarkar M, Schneider A, Fliessbach K, Kimmich O, Jessen F, Rostamzadeh A, Glanz W, Incesoy EI, Teipel S, Kilimann I, Goerss D, Spottke A, Brustkern J, Heneka MT, Brosseron F, Lüsebrink F, Hämmerer D, Düzel E, Tönnies K, Oeltze-Jafra S, Betts MJ

pubmed logopapersJan 1 2025
The locus coeruleus (LC) is linked to the development and pathophysiology of neurodegenerative diseases such as Alzheimer's disease (AD). Magnetic resonance imaging-based LC features have shown potential to assess LC integrity in vivo. We present a deep learning-based LC segmentation and feature extraction method called Ensemble-based Locus Coeruleus Segmentation Network (ELSI-Net) and apply it to healthy aging and AD dementia datasets. Agreement to expert raters and previously published LC atlases were assessed. We aimed to reproduce previously reported differences in LC integrity in aging and AD dementia and correlate extracted features to cerebrospinal fluid (CSF) biomarkers of AD pathology. ELSI-Net demonstrated high agreement to expert raters and published atlases. Previously reported group differences in LC integrity were detected and correlations to CSF biomarkers were found. Although we found excellent performance, further evaluations on more diverse datasets from clinical cohorts are required for a conclusive assessment of ELSI-Net's general applicability. We provide a thorough evaluation of a fully automatic locus coeruleus (LC) segmentation method termed Ensemble-based Locus Coeruleus Segmentation Network (ELSI-Net) in aging and Alzheimer's disease (AD) dementia.ELSI-Net outperforms previous work and shows high agreement with manual ratings and previously published LC atlases.ELSI-Net replicates previously shown LC group differences in aging and AD.ELSI-Net's LC mask volume correlates with cerebrospinal fluid biomarkers of AD pathology.

Integrating multimodal imaging and peritumoral features for enhanced prostate cancer diagnosis: A machine learning approach.

Zhou H, Xie M, Shi H, Shou C, Tang M, Zhang Y, Hu Y, Liu X

pubmed logopapersJan 1 2025
Prostate cancer is a common malignancy in men, and accurately distinguishing between benign and malignant nodules at an early stage is crucial for optimizing treatment. Multimodal imaging (such as ADC and T2) plays an important role in the diagnosis of prostate cancer, but effectively combining these imaging features for accurate classification remains a challenge. This retrospective study included MRI data from 199 prostate cancer patients. Radiomic features from both the tumor and peritumoral regions were extracted, and a random forest model was used to select the most contributive features for classification. Three machine learning models-Random Forest, XGBoost, and Extra Trees-were then constructed and trained on four different feature combinations (tumor ADC, tumor T2, tumor ADC+T2, and tumor + peritumoral ADC+T2). The model incorporating multimodal imaging features and peritumoral characteristics showed superior classification performance. The Extra Trees model outperformed the others across all feature combinations, particularly in the tumor + peritumoral ADC+T2 group, where the AUC reached 0.729. The AUC values for the other combinations also exceeded 0.65. While the Random Forest and XGBoost models performed slightly lower, they still demonstrated strong classification abilities, with AUCs ranging from 0.63 to 0.72. SHAP analysis revealed that key features, such as tumor texture and peritumoral gray-level features, significantly contributed to the model's classification decisions. The combination of multimodal imaging data with peritumoral features moderately improved the accuracy of prostate cancer classification. This model provides a non-invasive and effective diagnostic tool for clinical use and supports future personalized treatment decisions.

YOLOv8 framework for COVID-19 and pneumonia detection using synthetic image augmentation.

A Hasib U, Md Abu R, Yang J, Bhatti UA, Ku CS, Por LY

pubmed logopapersJan 1 2025
Early and accurate detection of COVID-19 and pneumonia through medical imaging is critical for effective patient management. This study aims to develop a robust framework that integrates synthetic image augmentation with advanced deep learning (DL) models to address dataset imbalance, improve diagnostic accuracy, and enhance trust in artificial intelligence (AI)-driven diagnoses through Explainable AI (XAI) techniques. The proposed framework benchmarks state-of-the-art models (InceptionV3, DenseNet, ResNet) for initial performance evaluation. Synthetic images are generated using Feature Interpolation through Linear Mapping and principal component analysis to enrich dataset diversity and balance class distribution. YOLOv8 and InceptionV3 models, fine-tuned via transfer learning, are trained on the augmented dataset. Grad-CAM is used for model explainability, while large language models (LLMs) support visualization analysis to enhance interpretability. YOLOv8 achieved superior performance with 97% accuracy, precision, recall, and F1-score, outperforming benchmark models. Synthetic data generation effectively reduced class imbalance and improved recall for underrepresented classes. Comparative analysis demonstrated significant advancements over existing methodologies. XAI visualizations (Grad-CAM heatmaps) highlighted anatomically plausible focus areas aligned with clinical markers of COVID-19 and pneumonia, thereby validating the model's decision-making process. The integration of synthetic data generation, advanced DL, and XAI significantly enhances the detection of COVID-19 and pneumonia while fostering trust in AI systems. YOLOv8's high accuracy, coupled with interpretable Grad-CAM visualizations and LLM-driven analysis, promotes transparency crucial for clinical adoption. Future research will focus on developing a clinically viable, human-in-the-loop diagnostic workflow, further optimizing performance through the integration of transformer-based language models to improve interpretability and decision-making.

Neurovision: A deep learning driven web application for brain tumour detection using weight-aware decision approach.

Santhosh TRS, Mohanty SN, Pradhan NR, Khan T, Derbali M

pubmed logopapersJan 1 2025
In recent times, appropriate diagnosis of brain tumour is a crucial task in medical system. Therefore, identification of a potential brain tumour is challenging owing to the complex behaviour and structure of the human brain. To address this issue, a deep learning-driven framework consisting of four pre-trained models viz DenseNet169, VGG-19, Xception, and EfficientNetV2B2 is developed to classify potential brain tumours from medical resonance images. At first, the deep learning models are trained and fine-tuned on the training dataset, obtained validation scores of trained models are considered as model-wise weights. Then, trained models are subsequently evaluated on the test dataset to generate model-specific predictions. In the weight-aware decision module, the class-bucket of a probable output class is updated with the weights of deep models when their predictions match the class. Finally, the bucket with the highest aggregated value is selected as the final output class for the input image. A novel weight-aware decision mechanism is a key feature of this framework, which effectively deals tie situations in multi-class classification compared to conventional majority-based techniques. The developed framework has obtained promising results of 98.7%, 97.52%, and 94.94% accuracy on three different datasets. The entire framework is seamlessly integrated into an end-to-end web-application for user convenience. The source code, dataset and other particulars are publicly released at https://github.com/SaiSanthosh1508/Brain-Tumour-Image-classification-app [Rishik Sai Santhosh, "Brain Tumour Image Classification Application," https://github.com/SaiSanthosh1508/Brain-Tumour-Image-classification-app] for academic, research and other non-commercial usage.
Page 25 of 25248 results
Show
per page
Get Started

Upload your X-ray image and get interpretation.

Upload now →

Disclaimer: X-ray Interpreter's AI-generated results are for informational purposes only and not a substitute for professional medical advice. Always consult a healthcare professional for medical diagnosis and treatment.