Sort by:
Page 24 of 42417 results

The role of deep learning in diagnostic imaging of spondyloarthropathies: a systematic review.

Omar M, Watad A, McGonagle D, Soffer S, Glicksberg BS, Nadkarni GN, Klang E

pubmed logopapersJun 1 2025
Diagnostic imaging is an integral part of identifying spondyloarthropathies (SpA), yet the interpretation of these images can be challenging. This review evaluated the use of deep learning models to enhance the diagnostic accuracy of SpA imaging. Following PRISMA guidelines, we systematically searched major databases up to February 2024, focusing on studies that applied deep learning to SpA imaging. Performance metrics, model types, and diagnostic tasks were extracted and analyzed. Study quality was assessed using QUADAS-2. We analyzed 21 studies employing deep learning in SpA imaging diagnosis across MRI, CT, and X-ray modalities. These models, particularly advanced CNNs and U-Nets, demonstrated high accuracy in diagnosing SpA, differentiating arthritis forms, and assessing disease progression. Performance metrics frequently surpassed traditional methods, with some models achieving AUCs up to 0.98 and matching expert radiologist performance. This systematic review underscores the effectiveness of deep learning in SpA imaging diagnostics across MRI, CT, and X-ray modalities. The studies reviewed demonstrated high diagnostic accuracy. However, the presence of small sample sizes in some studies highlights the need for more extensive datasets and further prospective and external validation to enhance the generalizability of these AI models. Question How can deep learning models improve diagnostic accuracy in imaging for spondyloarthropathies (SpA), addressing challenges in early detection and differentiation from other forms of arthritis? Findings Deep learning models, especially CNNs and U-Nets, showed high accuracy in SpA imaging across MRI, CT, and X-ray, often matching or surpassing expert radiologists. Clinical relevance Deep learning models can enhance diagnostic precision in SpA imaging, potentially reducing diagnostic delays and improving treatment decisions, but further validation on larger datasets is required for clinical integration.

Multi-modal large language models in radiology: principles, applications, and potential.

Shen Y, Xu Y, Ma J, Rui W, Zhao C, Heacock L, Huang C

pubmed logopapersJun 1 2025
Large language models (LLMs) and multi-modal large language models (MLLMs) represent the cutting-edge in artificial intelligence. This review provides a comprehensive overview of their capabilities and potential impact on radiology. Unlike most existing literature reviews focusing solely on LLMs, this work examines both LLMs and MLLMs, highlighting their potential to support radiology workflows such as report generation, image interpretation, EHR summarization, differential diagnosis generation, and patient education. By streamlining these tasks, LLMs and MLLMs could reduce radiologist workload, improve diagnostic accuracy, support interdisciplinary collaboration, and ultimately enhance patient care. We also discuss key limitations, such as the limited capacity of current MLLMs to interpret 3D medical images and to integrate information from both image and text data, as well as the lack of effective evaluation methods. Ongoing efforts to address these challenges are introduced.

Deep Conformal Supervision: Leveraging Intermediate Features for Robust Uncertainty Quantification.

Vahdani AM, Faghani S

pubmed logopapersJun 1 2025
Trustworthiness is crucial for artificial intelligence (AI) models in clinical settings, and a fundamental aspect of trustworthy AI is uncertainty quantification (UQ). Conformal prediction as a robust uncertainty quantification (UQ) framework has been receiving increasing attention as a valuable tool in improving model trustworthiness. An area of active research is the method of non-conformity score calculation for conformal prediction. We propose deep conformal supervision (DCS), which leverages the intermediate outputs of deep supervision for non-conformity score calculation, via weighted averaging based on the inverse of mean calibration error for each stage. We benchmarked our method on two publicly available datasets focused on medical image classification: a pneumonia chest radiography dataset and a preprocessed version of the 2019 RSNA Intracranial Hemorrhage dataset. Our method achieved mean coverage errors of 16e-4 (CI: 1e-4, 41e-4) and 5e-4 (CI: 1e-4, 10e-4) compared to baseline mean coverage errors of 28e-4 (CI: 2e-4, 64e-4) and 21e-4 (CI: 8e-4, 3e-4) on the two datasets, respectively (p < 0.001 on both datasets). Based on our findings, the baseline results of conformal prediction already exhibit small coverage errors. However, our method shows a significant improvement on coverage error, particularly noticeable in scenarios involving smaller datasets or when considering smaller acceptable error levels, which are crucial in developing UQ frameworks for healthcare AI applications.

A Large Language Model to Detect Negated Expressions in Radiology Reports.

Su Y, Babore YB, Kahn CE

pubmed logopapersJun 1 2025
Natural language processing (NLP) is crucial to extract information accurately from unstructured text to provide insights for clinical decision-making, quality improvement, and medical research. This study compared the performance of a rule-based NLP system and a medical-domain transformer-based model to detect negated concepts in radiology reports. Using a corpus of 984 de-identified radiology reports from a large U.S.-based academic health system (1000 consecutive reports, excluding 16 duplicates), the investigators compared the rule-based medspaCy system and the Clinical Assertion and Negation Classification Bidirectional Encoder Representations from Transformers (CAN-BERT) system to detect negated expressions of terms from RadLex, the Unified Medical Language System Metathesaurus, and the Radiology Gamuts Ontology. Power analysis determined a sample size of 382 terms to achieve α = 0.05 and β = 0.8 for McNemar's test; based on an estimate of 15% negated terms, 2800 randomly selected terms were annotated manually as negated or not negated. Precision, recall, and F1 of the two models were compared using McNemar's test. Of the 2800 terms, 387 (13.8%) were negated. For negation detection, medspaCy attained a recall of 0.795, precision of 0.356, and F1 of 0.492. CAN-BERT achieved a recall of 0.785, precision of 0.768, and F1 of 0.777. Although recall was not significantly different, CAN-BERT had significantly better precision (χ2 = 304.64; p < 0.001). The transformer-based CAN-BERT model detected negated terms in radiology reports with high precision and recall; its precision significantly exceeded that of the rule-based medspaCy system. Use of this system will improve data extraction from textual reports to support information retrieval, AI model training, and discovery of causal relationships.

Deep learning driven interpretable and informed decision making model for brain tumour prediction using explainable AI.

Adnan KM, Ghazal TM, Saleem M, Farooq MS, Yeun CY, Ahmad M, Lee SW

pubmed logopapersJun 1 2025
Brain Tumours are highly complex, particularly when it comes to their initial and accurate diagnosis, as this determines patient prognosis. Conventional methods rely on MRI and CT scans and employ generic machine learning techniques, which are heavily dependent on feature extraction and require human intervention. These methods may fail in complex cases and do not produce human-interpretable results, making it difficult for clinicians to trust the model's predictions. Such limitations prolong the diagnostic process and can negatively impact the quality of treatment. The advent of deep learning has made it a powerful tool for complex image analysis tasks, such as detecting brain Tumours, by learning advanced patterns from images. However, deep learning models are often considered "black box" systems, where the reasoning behind predictions remains unclear. To address this issue, the present study applies Explainable AI (XAI) alongside deep learning for accurate and interpretable brain Tumour prediction. XAI enhances model interpretability by identifying key features such as Tumour size, location, and texture, which are crucial for clinicians. This helps build their confidence in the model and enables them to make better-informed decisions. In this research, a deep learning model integrated with XAI is proposed to develop an interpretable framework for brain Tumour prediction. The model is trained on an extensive dataset comprising imaging and clinical data and demonstrates high AUC while leveraging XAI for model explainability and feature selection. The study findings indicate that this approach improves predictive performance, achieving an accuracy of 92.98% and a miss rate of 7.02%. Additionally, interpretability tools such as LIME and Grad-CAM provide clinicians with a clearer understanding of the decision-making process, supporting diagnosis and treatment. This model represents a significant advancement in brain Tumour prediction, with the potential to enhance patient outcomes and contribute to the field of neuro-oncology.

Structural and metabolic topological alterations associated with butylphthalide treatment in mild cognitive impairment: Data from a randomized, double-blind, placebo-controlled trial.

Han X, Gong S, Gong J, Wang P, Li R, Chen R, Xu C, Sun W, Li S, Chen Y, Yang Y, Luan H, Wen B, Guo J, Lv S, Wei C

pubmed logopapersJun 1 2025
Effective intervention for mild cognitive impairment (MCI) is key for preventing dementia. As a neuroprotective agent, butylphthalide has the potential to treat MCI due to Alzheimer disease (AD). However, the pharmacological mechanism of butylphthalide from the brain network perspective is not clear. Therefore, we aimed to investigate the multimodal brain network changes associated with butylphthalide treatment in MCI due to AD. A total of 270 patients with MCI due to AD received either butylphthalide or placebo at a ratio of 1:1 for 1 year. Effective treatment was defined as a decrease in the Alzheimer's Disease Assessment Scale-Cognitive Subscale (ADAS-cog) > 2.5. Brain networks were constructed using T1-magnetic resonance imaging and fluorodeoxyglucose positron emission tomography. A support vector machine was applied to develop predictive models. Both treatment (drug vs. placebo)-time interactions and efficacy (effective vs. ineffective)-time interactions were detected on some overlapping structural network metrics. Simple effects analyses revealed a significantly increased global efficiency in the structural network under both treatment and effective treatment of butylphthalide. Among the overlapping metrics, an increased degree centrality of left paracentral lobule was significantly related to poorer cognitive improvement. The predictive model based on baseline multimodal network metrics exhibited high accuracy (88.93%) of predicting butylphthalide's efficacy. Butylphthalide may restore abnormal organization in structural networks of patients with MCI due to AD, and baseline network metrics could be predictive markers for therapeutic efficacy of butylphthalide. This study was registered in the Chinese Clinical Trial Registry (Registration Number: ChiCTR1800018362, Registration Date: 2018-09-13).

Predicting hemorrhagic transformation in acute ischemic stroke: a systematic review, meta-analysis, and methodological quality assessment of CT/MRI-based deep learning and radiomics models.

Salimi M, Vadipour P, Bahadori AR, Houshi S, Mirshamsi A, Fatemian H

pubmed logopapersJun 1 2025
Acute ischemic stroke (AIS) is a major cause of mortality and morbidity, with hemorrhagic transformation (HT) as a severe complication. Accurate prediction of HT is essential for optimizing treatment strategies. This review assesses the accuracy and utility of deep learning (DL) and radiomics in predicting HT through imaging, regarding clinical decision-making for AIS patients. A literature search was conducted across five databases (Pubmed, Scopus, Web of Science, Embase, IEEE) up to January 23, 2025. Studies involving DL or radiomics-based ML models for predicting HT in AIS patients were included. Data from training, validation, and clinical-combined models were extracted and analyzed separately. Pooled sensitivity, specificity, and AUC were calculated with a random-effects bivariate model. For the quality assessment of studies, the Methodological Radiomics Score (METRICS) and QUADAS-2 tool were used. 16 studies consisting of 3,083 individual participants were included in the meta-analysis. The pooled AUC for training cohorts was 0.87, sensitivity 0.80, and specificity 0.85. For validation cohorts, AUC was 0.87, sensitivity 0.81, and specificity 0.86. Clinical-combined models showed an AUC of 0.93, sensitivity 0.84, and specificity 0.89. Moderate to severe heterogeneity was noted and addressed. Deep-learning models outperformed radiomics models, while clinical-combined models outperformed deep learning-only and radiomics-only models. The average METRICS score was 62.85%. No publication bias was detected. DL and radiomics models showed great potential in predicting HT in AIS patients. However, addressing methodological issues-such as inconsistent reference standards and limited external validation-is essential for the clinical implementation of these models.

TDSF-Net: Tensor Decomposition-Based Subspace Fusion Network for Multimodal Medical Image Classification.

Zhang Y, Xu G, Zhao M, Wang H, Shi F, Chen S

pubmed logopapersJun 1 2025
Data from multimodalities bring complementary information for deep learning-based medical image classification models. However, data fusion methods simply concatenating features or images barely consider the correlations or complementarities among different modalities and easily suffer from exponential growth in dimensions and computational complexity when the modality increases. Consequently, this article proposes a subspace fusion network with tensor decomposition (TD) to heighten multimodal medical image classification. We first introduce a Tucker low-rank TD module to map the high-level dimensional tensor to the low-rank subspace, reducing the redundancy caused by multimodal data and high-dimensional features. Then, a cross-tensor attention mechanism is utilized to fuse features from the subspace into a high-dimension tensor, enhancing the representation ability of extracted features and constructing the interaction information among components in the subspace. Extensive comparison experiments with state-of-the-art (SOTA) methods are conducted on one self-established and three public multimodal medical image datasets, verifying the effectiveness and generalization ability of the proposed method. The code is available at https://github.com/1zhang-yi/TDSFNet.

Aiding Medical Diagnosis through Image Synthesis and Classification

Kanishk Choudhary

arxiv logopreprintJun 1 2025
Medical professionals, especially those in training, often depend on visual reference materials to support an accurate diagnosis and develop pattern recognition skills. However, existing resources may lack the diversity and accessibility needed for broad and effective clinical learning. This paper presents a system designed to generate realistic medical images from textual descriptions and validate their accuracy through a classification model. A pretrained stable diffusion model was fine-tuned using Low-Rank Adaptation (LoRA) on the PathMNIST dataset, consisting of nine colorectal histopathology tissue types. The generative model was trained multiple times using different training parameter configurations, guided by domain-specific prompts to capture meaningful features. To ensure quality control, a ResNet-18 classification model was trained on the same dataset, achieving 99.76% accuracy in detecting the correct label of a colorectal histopathological medical image. Generated images were then filtered using the trained classifier and an iterative process, where inaccurate outputs were discarded and regenerated until they were correctly classified. The highest performing version of the generative model from experimentation achieved an F1 score of 0.6727, with precision and recall scores of 0.6817 and 0.7111, respectively. Some types of tissue, such as adipose tissue and lymphocytes, reached perfect classification scores, while others proved more challenging due to structural complexity. The self-validating approach created demonstrates a reliable method for synthesizing domain-specific medical images because of high accuracy in both the generation and classification portions of the system, with potential applications in both diagnostic support and clinical education. Future work includes improving prompt-specific accuracy and extending the system to other areas of medical imaging.

Modality Translation and Registration of MR and Ultrasound Images Using Diffusion Models

Xudong Ma, Nantheera Anantrasirichai, Stefanos Bolomytis, Alin Achim

arxiv logopreprintJun 1 2025
Multimodal MR-US registration is critical for prostate cancer diagnosis. However, this task remains challenging due to significant modality discrepancies. Existing methods often fail to align critical boundaries while being overly sensitive to irrelevant details. To address this, we propose an anatomically coherent modality translation (ACMT) network based on a hierarchical feature disentanglement design. We leverage shallow-layer features for texture consistency and deep-layer features for boundary preservation. Unlike conventional modality translation methods that convert one modality into another, our ACMT introduces the customized design of an intermediate pseudo modality. Both MR and US images are translated toward this intermediate domain, effectively addressing the bottlenecks faced by traditional translation methods in the downstream registration task. Experiments demonstrate that our method mitigates modality-specific discrepancies while preserving crucial anatomical boundaries for accurate registration. Quantitative evaluations show superior modality similarity compared to state-of-the-art modality translation methods. Furthermore, downstream registration experiments confirm that our translated images achieve the best alignment performance, highlighting the robustness of our framework for multi-modal prostate image registration.
Page 24 of 42417 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.