Sort by:
Page 24 of 46453 results

The Pivotal Role of Baseline LDCT for Lung Cancer Screening in the Era of Artificial Intelligence.

De Luca GR, Diciotti S, Mascalchi M

pubmed logopapersJun 1 2025
In this narrative review, we address the ongoing challenges of lung cancer (LC) screening using chest low-dose computerized tomography (LDCT) and explore the contributions of artificial intelligence (AI), in overcoming them. We focus on evaluating the initial (baseline) LDCT examination, which provides a wealth of information relevant to the screening participant's health. This includes the detection of large-size prevalent LC and small-size malignant nodules that are typically diagnosed as LCs upon growth in subsequent annual LDCT scans. Additionally, the baseline LDCT examination provides valuable information about smoking-related comorbidities, including cardiovascular disease, chronic obstructive pulmonary disease, and interstitial lung disease (ILD), by identifying relevant markers. Notably, these comorbidities, despite the slow progression of their markers, collectively exceed LC as ultimate causes of death at follow-up in LC screening participants. Computer-assisted diagnosis tools currently improve the reproducibility of radiologic readings and reduce the false negative rate of LDCT. Deep learning (DL) tools that analyze the radiomic features of lung nodules are being developed to distinguish between benign and malignant nodules. Furthermore, AI tools can predict the risk of LC in the years following a baseline LDCT. AI tools that analyze baseline LDCT examinations can also compute the risk of cardiovascular disease or death, paving the way for personalized screening interventions. Additionally, DL tools are available for assessing osteoporosis and ILD, which helps refine the individual's current and future health profile. The primary obstacles to AI integration into the LDCT screening pathway are the generalizability of performance and the explainability.

Comparing efficiency of an attention-based deep learning network with contemporary radiological workflow for pulmonary embolism detection on CTPA: A retrospective study.

Singh G, Singh A, Kainth T, Suman S, Sakla N, Partyka L, Phatak T, Prasanna P

pubmed logopapersJun 1 2025
Pulmonary embolism (PE) is the third most fatal cardiovascular disease in the United States. Currently, Computed Tomography Pulmonary Angiography (CTPA) serves as diagnostic gold standard for detecting PE. However, its efficacy is limited by factors such as contrast bolus timing, physician-dependent diagnostic accuracy, and time taken for scan interpretation. To address these limitations, we propose an AI-based PE triaging model (AID-PE) designed to predict the presence and key characteristics of PE on CTPA. This model aims to enhance diagnostic accuracy, efficiency, and the speed of PE identification. We trained AID-PE on the RSNA-STR PE CT (RSPECT) Dataset, N = 7279 and subsequently tested it on an in-house dataset (n = 106). We evaluated efficiency in a separate dataset (D<sub>4</sub>, n = 200) by comparing the time from scan to report in standard PE detection workflow versus AID-PE. A comparative analysis showed that AID-PE had an AUC/accuracy of 0.95/0.88. In contrast, a Convolutional Neural Network (CNN) classifier and a CNN-Long Short-Term Memory (LSTM) network without an attention module had an AUC/accuracy of 0.5/0.74 and 0.88/0.65, respectively. Our model achieved AUCs of 0.82 and 0.95 for detecting PE on the validation dataset and the independent test set, respectively. On D<sub>4</sub>, AID-PE took an average of 1.32 s to screen for PE across 148 CTPA studies, compared to an average of 40 min in contemporary workflow. AID-PE outperformed a baseline CNN classifier and a single-stage CNN-LSTM network without an attention module. Additionally, its efficiency is comparable to the current radiological workflow.

ScreenDx, an artificial intelligence-based algorithm for the incidental detection of pulmonary fibrosis.

Touloumes N, Gagianas G, Bradley J, Muelly M, Kalra A, Reicher J

pubmed logopapersJun 1 2025
Nonspecific symptoms and variability in radiographic reporting patterns contribute to a diagnostic delay of the diagnosis of pulmonary fibrosis. An attractive solution is the use of machine-learning algorithms to screen for radiographic features suggestive of pulmonary fibrosis. Thus, we developed and validated a machine learning classifier algorithm (ScreenDx) to screen computed tomography imaging and identify incidental cases of pulmonary fibrosis. ScreenDx is a deep learning convolutional neural network that was developed from a multi-source dataset (cohort A) of 3,658 cases of normal and abnormal CT's, including CT's from patients with COPD, emphysema, and community-acquired pneumonia. Cohort B, a US-based cohort (n = 381) was used for tuning the algorithm, and external validation was performed on cohort C (n = 683), a separate international dataset. At the optimal threshold, the sensitivity and specificity for detection of pulmonary fibrosis in cohort B was 0.91 (95 % CI 88-94 %) and 0.95 (95 % CI 93-97 %), respectively, with AUC 0.98. In the external validation dataset (cohort C), the sensitivity and specificity were 1.0 (95 % 99.9-100.0) and 0.98 (95 % CI 97.9-99.6), respectively, with AUC 0.997. There were no significant differences in the ability of ScreenDx to identify pulmonary fibrosis based on CT manufacturer (Phillips, Toshiba, GE Healthcare, or Siemens) or slice thickness (2 mm vs 2-4 mm vs 4 mm). Regardless of CT manufacturer or slice thickness, ScreenDx demonstrated high performance across two, multi-site datasets for identifying incidental cases of pulmonary fibrosis. This suggest that the algorithm may be generalizable across patient populations and different healthcare systems.

Diagnostic Accuracy of an Artificial Intelligence-based Platform in Detecting Periapical Radiolucencies on Cone-Beam Computed Tomography Scans of Molars.

Allihaibi M, Koller G, Mannocci F

pubmed logopapersMay 31 2025
This study aimed to evaluate the diagnostic performance of an artificial intelligence (AI)-based platform (Diagnocat) in detecting periapical radiolucencies (PARLs) in cone-beam computed tomography (CBCT) scans of molars. Specifically, we assessed Diagnocat's performance in detecting PARLs in non-root-filled molars and compared its diagnostic performance between preoperative and postoperative scans. This retrospective study analyzed preoperative and postoperative CBCT scans of 134 molars (327 roots). PARLs detected by Diagnocat were compared with assessments independently performed by two experienced endodontists, serving as the reference standard. Diagnostic performance was assessed at both tooth and root levels using sensitivity, specificity, accuracy, positive predictive value (PPV), negative predictive value (NPV), F1 score, and the area under the receiver operating characteristic curve (AUC-ROC). In preoperative scans of non-root-filled molars, Diagnocat demonstrated high sensitivity (teeth: 93.9%, roots: 86.2%), moderate specificity (teeth: 65.2%, roots: 79.9%), accuracy (teeth: 79.1%, roots: 82.6%), PPV (teeth: 71.8%, roots: 75.8%), NPV (teeth: 91.8%, roots: 88.8%), and F1 score (teeth: 81.3%, roots: 80.7%) for PARL detection. The AUC was 0.76 at the tooth level and 0.79 at the root level. Postoperative scans showed significantly lower PPV (teeth: 54.2%; roots: 46.9%) and F1 scores (teeth: 67.2%; roots: 59.2%). Diagnocat shows promise in detecting PARLs in CBCT scans of non-root-filled molars, demonstrating high sensitivity but moderate specificity, highlighting the need for human oversight to prevent overdiagnosis. However, diagnostic performance declined significantly in postoperative scans of root-filled molars. Further research is needed to optimize the platform's performance and support its integration into clinical practice. AI-based platforms such as Diagnocat can assist clinicians in detecting PARLs in CBCT scans, enhancing diagnostic efficiency and supporting decision-making. However, human expertise remains essential to minimize the risk of overdiagnosis and avoid unnecessary treatment.

Text-to-CT Generation via 3D Latent Diffusion Model with Contrastive Vision-Language Pretraining

Daniele Molino, Camillo Maria Caruso, Filippo Ruffini, Paolo Soda, Valerio Guarrasi

arxiv logopreprintMay 31 2025
Objective: While recent advances in text-conditioned generative models have enabled the synthesis of realistic medical images, progress has been largely confined to 2D modalities such as chest X-rays. Extending text-to-image generation to volumetric Computed Tomography (CT) remains a significant challenge, due to its high dimensionality, anatomical complexity, and the absence of robust frameworks that align vision-language data in 3D medical imaging. Methods: We introduce a novel architecture for Text-to-CT generation that combines a latent diffusion model with a 3D contrastive vision-language pretraining scheme. Our approach leverages a dual-encoder CLIP-style model trained on paired CT volumes and radiology reports to establish a shared embedding space, which serves as the conditioning input for generation. CT volumes are compressed into a low-dimensional latent space via a pretrained volumetric VAE, enabling efficient 3D denoising diffusion without requiring external super-resolution stages. Results: We evaluate our method on the CT-RATE dataset and conduct a comprehensive assessment of image fidelity, clinical relevance, and semantic alignment. Our model achieves competitive performance across all tasks, significantly outperforming prior baselines for text-to-CT generation. Moreover, we demonstrate that CT scans synthesized by our framework can effectively augment real data, improving downstream diagnostic performance. Conclusion: Our results show that modality-specific vision-language alignment is a key component for high-quality 3D medical image generation. By integrating contrastive pretraining and volumetric diffusion, our method offers a scalable and controllable solution for synthesizing clinically meaningful CT volumes from text, paving the way for new applications in data augmentation, medical education, and automated clinical simulation.

NeoPred: dual-phase CT AI forecasts pathologic response to neoadjuvant chemo-immunotherapy in NSCLC.

Zheng J, Yan Z, Wang R, Xiao H, Chen Z, Ge X, Li Z, Liu Z, Yu H, Liu H, Wang G, Yu P, Fu J, Zhang G, Zhang J, Liu B, Huang Y, Deng H, Wang C, Fu W, Zhang Y, Wang R, Jiang Y, Lin Y, Huang L, Yang C, Cui F, He J, Liang H

pubmed logopapersMay 31 2025
Accurate preoperative prediction of major pathological response or pathological complete response after neoadjuvant chemo-immunotherapy remains a critical unmet need in resectable non-small-cell lung cancer (NSCLC). Conventional size-based imaging criteria offer limited reliability, while biopsy confirmation is available only post-surgery. We retrospectively assembled 509 consecutive NSCLC cases from four Chinese thoracic-oncology centers (March 2018 to March 2023) and prospectively enrolled 50 additional patients. Three 3-dimensional convolutional neural networks (pre-treatment CT, pre-surgical CT, dual-phase CT) were developed; the best-performing dual-phase model (NeoPred) optionally integrated clinical variables. Model performance was measured by area under the receiver-operating-characteristic curve (AUC) and compared with nine board-certified radiologists. In an external validation set (n=59), NeoPred achieved an AUC of 0.772 (95% CI: 0.650 to 0.895), sensitivity 0.591, specificity 0.733, and accuracy 0.627; incorporating clinical data increased the AUC to 0.787. In a prospective cohort (n=50), NeoPred reached an AUC of 0.760 (95% CI: 0.628 to 0.891), surpassing the experts' mean AUC of 0.720 (95% CI: 0.574 to 0.865). Model assistance raised the pooled expert AUC to 0.829 (95% CI: 0.707 to 0.951) and accuracy to 0.820. Marked performance persisted within radiological stable-disease subgroups (external AUC 0.742, 95% CI: 0.468 to 1.000; prospective AUC 0.833, 95% CI: 0.497 to 1.000). Combining dual-phase CT and clinical variables, NeoPred reliably and non-invasively predicts pathological response to neoadjuvant chemo-immunotherapy in NSCLC, outperforms unaided expert assessment, and significantly enhances radiologist performance. Further multinational trials are needed to confirm generalizability and support surgical decision-making.

Dual-energy CT-based virtual monoenergetic imaging via unsupervised learning.

Liu CK, Chang HY, Huang HM

pubmed logopapersMay 31 2025
Since its development, virtual monoenergetic imaging (VMI) derived from dual-energy computed tomography (DECT) has been shown to be valuable in many clinical applications. However, DECT-based VMI showed increased noise at low keV levels. In this study, we proposed an unsupervised learning method to generate VMI from DECT. This means that we don't require training and labeled (i.e. high-quality VMI) data. Specifically, DECT images were fed into a deep learning (DL) based model expected to output VMI. Based on the theory that VMI obtained from image space data is a linear combination of DECT images, we used the model output (i.e. the predicted VMI) to recalculate DECT images. By minimizing the difference between the measured and recalculated DECT images, the DL-based model can be constrained itself to generate VMI from DECT images. We investigate whether the proposed DL-based method has the ability to improve the quality of VMIs. The experimental results obtained from patient data showed that the DL-based VMIs had better image quality than the conventional DECT-based VMIs. Moreover, the CT number differences between the DECT-based and DL-based VMIs were distributed within <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>±</mo></math> 10 HU for bone and <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>±</mo></math> 5 HU for brain, fat, and muscle. Except for bone, no statistically significant difference in CT number measurements was found between the DECT-based and DL-based VMIs (p > 0.01). Our preliminary results show that DL has the potential to unsupervisedly generate high-quality VMIs directly from DECT.

Relationship between spleen volume and diameter for assessment of response to treatment on CT in patients with hematologic malignancies enrolled in clinical trials.

Hasenstab KA, Lu J, Leong LT, Bossard E, Pylarinou-Sinclair E, Devi K, Cunha GM

pubmed logopapersMay 31 2025
Investigate spleen diameter (d) and volume (v) relationship in patients with hematologic malignancies (HM) by determining volumetric thresholds that best correlate to established diameter thresholds for assessing response to treatment. Exploratorily, interrogate the impact of volumetric measurements in response categories and as a predictor of response. Secondary analysis of prospectively collected clinical trial data of 382 patients with HM. Spleen diameters were computed following Lugano criteria and volumes using deep learning segmentation. d and v relationship was estimated using power regression model, volumetric thresholds ([Formula: see text]) for treatment response estimated; threshold search to determine percentual change ([Formula: see text] and minimum volumetric increase ([Formula: see text]) that maximize agreement with Lugano criteria performed. Spleen diameter and volume predictive performance for clinical response investigated using random forest model. [Formula: see text] describes the relationship between spleen diameter and volume. [Formula: see text] for splenomegaly was 546 cm³. [Formula: see text], [Formula: see text], and [Formula: see text] for assessing response resulting in highest agreement with Lugano criteria were 570 cm<sup>3</sup>, 73%, and 170 cm<sup>3</sup>, respectively. Predictive performance for response between diameter and volume were not significantly different (P=0.78). This study provides empirical spleen volume threshold and percentual changes that best correlate with diameter thresholds, i.e., Lugano criteria, for assessment of response to treatment in patients with HM. In our dataset use of spleen volumetric thresholds versus diameter thresholds resulted in similar response assessment categories and did not signal differences in predictive values for response.

CCTA-Derived coronary plaque burden offers enhanced prognostic value over CAC scoring in suspected CAD patients.

Dahdal J, Jukema RA, Maaniitty T, Nurmohamed NS, Raijmakers PG, Hoek R, Driessen RS, Twisk JWR, Bär S, Planken RN, van Royen N, Nijveldt R, Bax JJ, Saraste A, van Rosendael AR, Knaapen P, Knuuti J, Danad I

pubmed logopapersMay 30 2025
To assess the prognostic utility of coronary artery calcium (CAC) scoring and coronary computed tomography angiography (CCTA)-derived quantitative plaque metrics for predicting adverse cardiovascular outcomes. The study enrolled 2404 patients with suspected coronary artery disease (CAD) but without a prior history of CAD. All participants underwent CAC scoring and CCTA, with plaque metrics quantified using an artificial intelligence (AI)-based tool (Cleerly, Inc). Percent atheroma volume (PAV) and non-calcified plaque volume percentage (NCPV%), reflecting total plaque burden and the proportion of non-calcified plaque volume normalized to vessel volume, were evaluated. The primary endpoint was a composite of all-cause mortality and non-fatal myocardial infarction (MI). Cox proportional hazard models, adjusted for clinical risk factors and early revascularization, were employed for analysis. During a median follow-up of 7.0 years, 208 patients (8.7%) experienced the primary endpoint, including 73 cases of MI (3%). The model incorporating PAV demonstrated superior discriminatory power for the composite endpoint (AUC = 0.729) compared to CAC scoring (AUC = 0.706, P = 0.016). In MI prediction, PAV (AUC = 0.791) significantly outperformed CAC (AUC = 0.699, P < 0.001), with NCPV% showing the highest prognostic accuracy (AUC = 0.814, P < 0.001). AI-driven assessment of coronary plaque burden enhances prognostic accuracy for future adverse cardiovascular events, highlighting the critical role of comprehensive plaque characterization in refining risk stratification strategies.

Three-dimensional automated segmentation of adolescent idiopathic scoliosis on computed tomography driven by deep learning: A retrospective study.

Ji Y, Mei X, Tan R, Zhang W, Ma Y, Peng Y, Zhang Y

pubmed logopapersMay 30 2025
Accurate vertebrae segmentation is crucial for modern surgical technologies, and deep learning networks provide valuable tools for this task. This study explores the application of advanced deep learning-based methods for segmenting vertebrae in computed tomography (CT) images of adolescent idiopathic scoliosis (AIS) patients. In this study, we collected a dataset of 31 samples from AIS patients, covering a wide range of spinal regions from cervical to lumbar vertebrae. High-resolution CT images were obtained for each sample, forming the basis of our segmentation analysis. We utilized 2 popular neural networks, U-Net and Attention U-Net, to segment the vertebrae in these CT images. Segmentation performance was rigorously evaluated using 2 key metrics: the Dice Coefficient Score to measure overlap between segmented and ground truth regions, and the Hausdorff distance (HD) to assess boundary dissimilarity. Both networks performed well, with U-Net achieving an average Dice coefficient of 92.2 ± 2.4% and an HD of 9.80 ± 1.34 mm. Attention U-Net showed similar results, with a Dice coefficient of 92.3 ± 2.9% and an HD of 8.67 ± 3.38 mm. When applied to the challenging anatomy of AIS, our findings align with literature results from advanced 3D U-Nets on healthy spines. Although no significant overall difference was observed between the 2 networks (P > .05), Attention U-Net exhibited an improved Dice coefficient (91.5 ± 0.0% vs 88.8 ± 0.1%, P = .151) and a significantly better HD (9.04 ± 4.51 vs. 13.60 ± 2.26 mm, P = .027) in critical scoliosis sites (mid-thoracic region), suggesting enhanced suitability for complex anatomy. Our study indicates that U-Net neural networks are feasible and effective for automated vertebrae segmentation in AIS patients using clinical 3D CT images. Attention U-Net demonstrated improved performance in thoracic levels, which are primary sites of scoliosis and may be more suitable for challenging anatomical regions.
Page 24 of 46453 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.