Back to all papers

Convolutional neural network application for automated lung cancer detection on chest CT using Google AI Studio.

Authors

Aljneibi Z,Almenhali S,Lanca L

Affiliations (3)

  • Department of Radiography and Medical Imaging, Fatima College of Health Sciences - Institute of Applied Technology, Abu Dhabi, United Arab Emirates. Electronic address: [email protected].
  • Department of Radiography and Medical Imaging, Fatima College of Health Sciences - Institute of Applied Technology, Abu Dhabi, United Arab Emirates. Electronic address: [email protected].
  • Department of Radiography and Medical Imaging, Fatima College of Health Sciences - Institute of Applied Technology, Abu Dhabi, United Arab Emirates. Electronic address: [email protected].

Abstract

This study aimed to evaluate the diagnostic performance of an artificial intelligence (AI)-enhanced model for detecting lung cancer on computed tomography (CT) images of the chest. It assessed diagnostic accuracy, sensitivity, specificity, and interpretative consistency across normal, benign, and malignant cases. An exploratory analysis was performed using the publicly available IQ-OTH/NCCD dataset, comprising 110 CT cases (55 normal, 15 benign, 40 malignant). A pre-trained convolutional neural network in Google AI Studio was fine-tuned using 25 training images and tested on a separate image from each case. Quantitative evaluation of diagnostic accuracy and qualitative content analysis of AI-generated reports was conducted to assess diagnostic patterns and interpretative behavior. The AI model achieved an overall accuracy of 75.5 %, with a sensitivity of 74.5 % and specificity of 76.4 %. The area under the ROC curve (AUC) for all cases was 0.824 (95 % CI: 0.745-0.897), indicating strong discriminative power. Malignant cases had the highest classification performance (AUC = 0.902), while benign cases were more challenging to classify (AUC = 0.615). Qualitative analysis showed the AI used consistent radiological terminology, but demonstrated oversensitivity to ground-glass opacities, contributing to false positives in non-malignant cases. The AI model showed promising diagnostic potential, particularly in identifying malignancies. However, specificity limitations and interpretative errors in benign and normal cases underscore the need for human oversight and continued model refinement. AI-enhanced CT interpretation can improve efficiency in high-volume settings but should serve as a decision-support tool rather than a replacement for expert image review.

Topics

Journal Article

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.