Back to all papers

Deep Learning Based Multiomics Model for Risk Stratification of Postoperative Distant Metastasis in Colorectal Cancer.

Authors

Yao X,Han X,Huang D,Zheng Y,Deng S,Ning X,Yuan L,Ao W

Affiliations (5)

  • Department of Ultrasound, Putuo People's Hospital, School of Medicine, Tongji University, Shanghai, China (X.Y.).
  • Department of Pathology, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang Province, China (X.H.).
  • Department of Radiology, Taizhou First People's Hospital, School of Medicine, Taizhou University, Taizhou, Zhejiang Province, China (D.H., Y.Z.).
  • Department of Radiology, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang Province, China (S.D., X.N., L.Y., W.A.).
  • Department of Radiology, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang Province, China (S.D., X.N., L.Y., W.A.); Zhejiang Academy of Traditional Chinese Medicine, Hangzhou, Zhejiang Province, China (W.A.). Electronic address: [email protected].

Abstract

To develop deep learning-based multiomics models for predicting postoperative distant metastasis (DM) and evaluating survival prognosis in colorectal cancer (CRC) patients. This retrospective study included 521 CRC patients who underwent curative surgery at two centers. Preoperative CT and postoperative hematoxylin-eosin (HE) stained slides were collected. A total of 381 patients from Center 1 were split (7:3) into training and internal validation sets; 140 patients from Center 2 formed the independent external validation set. Patients were grouped based on DM status during follow-up. Radiological and pathological models were constructed using independent imaging and pathological predictors. Deep features were extracted with a ResNet-101 backbone to build deep learning radiomics (DLRS) and deep learning pathomics (DLPS) models. Two integrated models were developed: Nomogram 1 (radiological + DLRS) and Nomogram 2 (pathological + DLPS). CT- reported T (cT) stage (OR=2.00, P=0.006) and CT-reported N (cN) stage (OR=1.63, P=0.023) were identified as independent radiologic predictors for building the radiological model; pN stage (OR=1.91, P=0.003) and perineural invasion (OR=2.07, P=0.030) were identified as pathological predictors for building the pathological model. DLRS and DLPS incorporated 28 and 30 deep features, respectively. In the training set, area under the curve (AUC) for radiological, pathological, DLRS, DLPS, Nomogram 1, and Nomogram 2 models were 0.657, 0.687, 0.931, 0.914, 0.938, and 0.930. DeLong's test showed DLRS, DLPS, and both nomograms significantly outperformed conventional models (P<.05). Kaplan-Meier analysis confirmed effective 3-year disease-free survival (DFS) stratification by the nomograms. Deep learning-based multiomics models provided high accuracy for postoperative DM prediction. Nomogram models enabled reliable DFS risk stratification in CRC patients.

Topics

Journal Article

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.