Sort by:
Page 237 of 3623619 results

One for multiple: Physics-informed synthetic data boosts generalizable deep learning for fast MRI reconstruction.

Wang Z, Yu X, Wang C, Chen W, Wang J, Chu YH, Sun H, Li R, Li P, Yang F, Han H, Kang T, Lin J, Yang C, Chang S, Shi Z, Hua S, Li Y, Hu J, Zhu L, Zhou J, Lin M, Guo J, Cai C, Chen Z, Guo D, Yang G, Qu X

pubmed logopapersJul 1 2025
Magnetic resonance imaging (MRI) is a widely used radiological modality renowned for its radiation-free, comprehensive insights into the human body, facilitating medical diagnoses. However, the drawback of prolonged scan times hinders its accessibility. The k-space undersampling offers a solution, yet the resultant artifacts necessitate meticulous removal during image reconstruction. Although deep learning (DL) has proven effective for fast MRI image reconstruction, its broader applicability across various imaging scenarios has been constrained. Challenges include the high cost and privacy restrictions associated with acquiring large-scale, diverse training data, coupled with the inherent difficulty of addressing mismatches between training and target data in existing DL methodologies. Here, we present a novel Physics-Informed Synthetic data learning Framework for fast MRI, called PISF. PISF marks a breakthrough by enabling generalizable DL for multi-scenario MRI reconstruction through a single trained model. Our approach separates the reconstruction of a 2D image into many 1D basic problems, commencing with 1D data synthesis to facilitate generalization. We demonstrate that training DL models on synthetic data, coupled with enhanced learning techniques, yields in vivo MRI reconstructions comparable to or surpassing those of models trained on matched realistic datasets, reducing the reliance on real-world MRI data by up to 96 %. With a single trained model, our PISF supports the high-quality reconstruction under 4 sampling patterns, 5 anatomies, 6 contrasts, 5 vendors, and 7 centers, exhibiting remarkable generalizability. Its adaptability to 2 neuro and 2 cardiovascular patient populations has been validated through evaluations by 10 experienced medical professionals. In summary, PISF presents a feasible and cost-effective way to significantly boost the widespread adoption of DL in various fast MRI applications.

Cascade learning in multi-task encoder-decoder networks for concurrent bone segmentation and glenohumeral joint clinical assessment in shoulder CT scans.

Marsilio L, Marzorati D, Rossi M, Moglia A, Mainardi L, Manzotti A, Cerveri P

pubmed logopapersJul 1 2025
Osteoarthritis is a degenerative condition that affects bones and cartilage, often leading to structural changes, including osteophyte formation, bone density loss, and the narrowing of joint spaces. Over time, this process may disrupt the glenohumeral (GH) joint functionality, requiring a targeted treatment. Various options are available to restore joint functions, ranging from conservative management to surgical interventions, depending on the severity of the condition. This work introduces an innovative deep learning framework to process shoulder CT scans. It features the semantic segmentation of the proximal humerus and scapula, the 3D reconstruction of bone surfaces, the identification of the GH joint region, and the staging of three common osteoarthritic-related conditions: osteophyte formation (OS), GH space reduction (JS), and humeroscapular alignment (HSA). Each condition was stratified into multiple severity stages, offering a comprehensive analysis of shoulder bone structure pathology. The pipeline comprised two cascaded CNN architectures: 3D CEL-UNet for segmentation and 3D Arthro-Net for threefold classification. A retrospective dataset of 571 CT scans featuring patients with various degrees of GH osteoarthritic-related pathologies was used to train, validate, and test the pipeline. Root mean squared error and Hausdorff distance median values for 3D reconstruction were 0.22 mm and 1.48 mm for the humerus and 0.24 mm and 1.48 mm for the scapula, outperforming state-of-the-art architectures and making it potentially suitable for a PSI-based shoulder arthroplasty preoperative plan context. The classification accuracy for OS, JS, and HSA consistently reached around 90% across all three categories. The computational time for the entire inference pipeline was less than 15 s, showcasing the framework's efficiency and compatibility with orthopedic radiology practice. The achieved reconstruction and classification accuracy, combined with the rapid processing time, represent a promising advancement towards the medical translation of artificial intelligence tools. This progress aims to streamline the preoperative planning pipeline, delivering high-quality bone surfaces and supporting surgeons in selecting the most suitable surgical approach according to the unique patient joint conditions.

CUAMT: A MRI semi-supervised medical image segmentation framework based on contextual information and mixed uncertainty.

Xiao H, Wang Y, Xiong S, Ren Y, Zhang H

pubmed logopapersJul 1 2025
Semi-supervised medical image segmentation is a class of machine learning paradigms for segmentation model training and inference using both labeled and unlabeled medical images, which can effectively reduce the data labeling workload. However, existing consistency semi-supervised segmentation models mainly focus on investigating more complex consistency strategies and lack efficient utilization of volumetric contextual information, which leads to vague or uncertain understanding of the boundary between the object and the background by the model, resulting in ambiguous or even erroneous boundary segmentation results. For this reason, this study proposes a hybrid uncertainty network CUAMT based on contextual information. In this model, a contextual information extraction module CIE is proposed, which learns the connection between image contexts by extracting semantic features at different scales, and guides the model to enhance learning contextual information. In addition, a hybrid uncertainty module HUM is proposed, which guides the model to focus on segmentation boundary information by combining the global and local uncertainty information of two different networks to improve the segmentation performance of the networks at the boundary. In the left atrial segmentation and brain tumor segmentation dataset, validation experiments were conducted on the proposed model. The experiments show that our model achieves 89.84%, 79.89%, and 8.73 on the Dice metric, Jaccard metric, and 95HD metric, respectively, which significantly outperforms several current SOTA semi-supervised methods. This study confirms that the CIE and HUM strategies are effective. A semi-supervised segmentation framework is proposed for medical image segmentation.

Reconstruction-based approach for chest X-ray image segmentation and enhanced multi-label chest disease classification.

Hage Chehade A, Abdallah N, Marion JM, Hatt M, Oueidat M, Chauvet P

pubmed logopapersJul 1 2025
U-Net is a commonly used model for medical image segmentation. However, when applied to chest X-ray images that show pathologies, it often fails to include these critical pathological areas in the generated masks. To address this limitation, in our study, we tackled the challenge of precise segmentation and mask generation by developing a novel approach, using CycleGAN, that encompasses the areas affected by pathologies within the region of interest, allowing the extraction of relevant radiomic features linked to pathologies. Furthermore, we adopted a feature selection approach to focus the analysis on the most significant features. The results of our proposed pipeline are promising, with an average accuracy of 92.05% and an average AUC of 89.48% for the multi-label classification of effusion and infiltration acquired from the ChestX-ray14 dataset, using the XGBoost model. Furthermore, applying our methodology to the classification of the 14 diseases in the ChestX-ray14 dataset resulted in an average AUC of 83.12%, outperforming previous studies. This research highlights the importance of effective pathological mask generation and features selection for accurate classification of chest diseases. The promising results of our approach underscore its potential for broader applications in the classification of chest diseases.

Artificial Intelligence in Prostate Cancer Diagnosis on Magnetic Resonance Imaging: Time for a New PARADIGM.

Ng AB, Giganti F, Kasivisvanathan V

pubmed logopapersJul 1 2025
Artificial intelligence (AI) may provide a solution for improving access to expert, timely, and accurate magnetic resonance imaging (MRI) interpretation. The PARADIGM trial will provide level 1 evidence on the role of AI in the diagnosis of prostate cancer on MRI.

CAD-Unet: A capsule network-enhanced Unet architecture for accurate segmentation of COVID-19 lung infections from CT images.

Dang Y, Ma W, Luo X, Wang H

pubmed logopapersJul 1 2025
Since the outbreak of the COVID-19 pandemic in 2019, medical imaging has emerged as a primary modality for diagnosing COVID-19 pneumonia. In clinical settings, the segmentation of lung infections from computed tomography images enables rapid and accurate quantification and diagnosis of COVID-19. Segmentation of COVID-19 infections in the lungs poses a formidable challenge, primarily due to the indistinct boundaries and limited contrast presented by ground glass opacity manifestations. Moreover, the confounding similarity among infiltrates, lung tissues, and lung walls further complicates this segmentation task. To address these challenges, this paper introduces a novel deep network architecture, called CAD-Unet, for segmenting COVID-19 lung infections. In this architecture, capsule networks are incorporated into the existing Unet framework. Capsule networks represent a novel type of network architecture that differs from traditional convolutional neural networks. They utilize vectors for information transfer among capsules, facilitating the extraction of intricate lesion spatial information. Additionally, we design a capsule encoder path and establish a coupling path between the unet encoder and the capsule encoder. This design maximizes the complementary advantages of both network structures while achieving efficient information fusion. Finally, extensive experiments are conducted on four publicly available datasets, encompassing binary segmentation tasks and multi-class segmentation tasks. The experimental results demonstrate the superior segmentation performance of the proposed model. The code has been released at: https://github.com/AmanoTooko-jie/CAD-Unet.

Prediction of early recurrence in primary central nervous system lymphoma based on multimodal MRI-based radiomics: A preliminary study.

Wang X, Wang S, Zhao X, Chen L, Yuan M, Yan Y, Sun X, Liu Y, Sun S

pubmed logopapersJul 1 2025
To evaluate the role of multimodal magnetic resonance imaging radiomics features in predicting early recurrence of primary central nervous system lymphoma (PCNSL) and to investigate their correlation with patient prognosis. A retrospective analysis was conducted on 145 patients with PCNSL who were treated with high-dose methotrexate-based chemotherapy. Clinical data and MRI images were collected, with tumor regions segmented using ITK-SNAP software. Radiomics features were extracted via Pyradiomics, and predictive models were developed using various machine learning algorithms. The predictive performance of these models was assessed using receiver operating characteristic (ROC) curves. Additionally, Cox regression analysis was employed to identify risk factors associated with progression-free survival (PFS). In the cohort of 145 PCNSL patients (72 recurrence, 73 non-recurrence), clinical characteristics were comparable between groups except for multiple lesion frequency (61.1% vs. 39.7%, p < 0.05) and not receiving consolidation therapy (44.4% vs. 13.7%, p < 0.05). A total of 2392 radiomics features were extracted from CET1 and T2WI MRI sequence. Combining clinical variables, 10 features were retained after the feature selection process. The logistic regression (LR) model exhibited superior predictive performance in the test set to predict PCNSL early relapse, with an area under the curve (AUC) of 0.887 (95 % confidence interval: 0.785-0.988). Multivariate Cox regression identified the Cli-Rad score as an independent prognostic factor for PFS. Significant difference in PFS was observed between high- and low-risk groups defined by Cli-Rad score (8.24 months vs. 24.17 months, p < 0.001). The LR model based on multimodal MRI radiomics and clinical features, can effectively predict early recurrence of PCNSL, while the Cli-Rad score could independently forecast PFS among PCNSL patients.

Automated Acetabular Defect Reconstruction and Analysis for Revision Total Hip Arthroplasty: A Computational Modeling Study.

Hopkins D, Callary SA, Solomon LB, Lee PVS, Ackland DC

pubmed logopapersJul 1 2025
Revision total hip arthroplasty (rTHA) involving large acetabular defects is associated with high early failure rates, primarily due to cup loosening. Most acetabular defect classification systems used in surgical planning are based on planar radiographs and do not encapsulate three-dimensional geometry and morphology of the acetabular defect. This study aimed to develop an automated computational modeling pipeline for rapid generation of three-dimensional acetabular bone defect geometry. The framework employed artificial neural network segmentation of preoperative pelvic computed tomography (CT) images and statistical shape model generation for defect reconstruction in 60 rTHA patients. Regional acetabular absolute defect volumes (ADV), relative defect volumes (RDV) and defect depths (DD) were calculated and stratified within Paprosky classifications. Defect geometries from the automated modeling pipeline were validated against manually reconstructed models and were found to have a mean dice coefficient of 0.827 and a mean relative volume error of 16.4%. The mean ADV, RDV and DD of classification groups generally increased with defect severity. Except for superior RDV and ADV between 3A and 2A defects, and anterior RDV and DD between 3B and 3A defects, statistically significant differences in ADV, RDV or DD were only found between 3B and 2B-2C defects (p < 0.05). Poor correlations observed between ADV, RDV, and DD within Paprosky classifications suggest that quantitative measures are not unique to each Paprosky grade. The automated modeling tools developed may be useful in surgical planning and computational modeling of rTHA.

Development and validation of an interpretable machine learning model for diagnosing pathologic complete response in breast cancer.

Zhou Q, Peng F, Pang Z, He R, Zhang H, Jiang X, Song J, Li J

pubmed logopapersJul 1 2025
Pathologic complete response (pCR) following neoadjuvant chemotherapy (NACT) is a critical prognostic marker for patients with breast cancer, potentially allowing surgery omission. However, noninvasive and accurate pCR diagnosis remains a significant challenge due to the limitations of current imaging techniques, particularly in cases where tumors completely disappear post-NACT. We developed a novel framework incorporating Dimensional Accumulation for Layered Images (DALI) and an Attention-Box annotation tool to address the unique challenge of analyzing imaging data where target lesions are absent. These methods transform three-dimensional magnetic resonance imaging into two-dimensional representations and ensure consistent target tracking across time-points. Preprocessing techniques, including tissue-region normalization and subtraction imaging, were used to enhance model performance. Imaging features were extracted using radiomics and pretrained deep-learning models, and machine-learning algorithms were integrated into a stacked ensemble model. The approach was developed using the I-SPY 2 dataset and validated with an independent Tangshan People's Hospital cohort. The stacked ensemble model achieved superior diagnostic performance, with an area under the receiver operating characteristic curve of 0.831 (95 % confidence interval, 0.769-0.887) on the test set, outperforming individual models. Tissue-region normalization and subtraction imaging significantly enhanced diagnostic accuracy. SHAP analysis identified variables that contributed to the model predictions, ensuring model interpretability. This innovative framework addresses challenges of noninvasive pCR diagnosis. Integrating advanced preprocessing techniques improves feature quality and model performance, supporting clinicians in identifying patients who can safely omit surgery. This innovation reduces unnecessary treatments and improves quality of life for patients with breast cancer.

Optimizing clinical risk stratification of localized prostate cancer.

Gnanapragasam VJ

pubmed logopapersJul 1 2025
To review the current risk and prognostic stratification systems in localised prostate cancer. To explore some of the most promising adjuncts to clinical models and what the evidence has shown regarding their value. There are many new biomarker-based models seeking to improve, optimise or replace clinical models. There are promising data on the value of MRI, radiomics, genomic classifiers and most recently artificial intelligence tools in refining stratification. Despite the extensive literature however, there remains uncertainty on where in pathways they can provide the most benefit and whether a biomarker is most useful for prognosis or predictive use. Comparisons studies have also often overlooked the fact that clinical models have themselves evolved and the context of the baseline used in biomarker studies that have shown superiority have to be considered. For new biomarkers to be included in stratification models, well designed prospective clinical trials are needed. Until then, there needs to be caution in interpretation of their use for day-to-day decision making. It is critical that users balance any purported incremental value against the performance of the latest clinical classification and multivariate models especially as the latter are cost free and widely available.
Page 237 of 3623619 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.