Sort by:
Page 225 of 3623619 results

A deep-learning model to predict the completeness of cytoreductive surgery in colorectal cancer with peritoneal metastasis☆.

Lin Q, Chen C, Li K, Cao W, Wang R, Fichera A, Han S, Zou X, Li T, Zou P, Wang H, Ye Z, Yuan Z

pubmed logopapersJul 1 2025
Colorectal cancer (CRC) with peritoneal metastasis (PM) is associated with poor prognosis. The Peritoneal Cancer Index (PCI) is used to evaluate the extent of PM and to select Cytoreductive Surgery (CRS). However, PCI score is not accurate to guide patient's selection for CRS. We have developed a novel AI framework of decoupling feature alignment and fusion (DeAF) by deep learning to aid selection of PM patients and predict surgical completeness of CRS. 186 CRC patients with PM recruited from four tertiary hospitals were enrolled. In the training cohort, deep learning was used to train the DeAF model using Simsiam algorithms by contrast CT images and then fuse clinicopathological parameters to increase performance. The accuracy, sensitivity, specificity, and AUC by ROC were evaluated both in the internal validation cohort and three external cohorts. The DeAF model demonstrated a robust accuracy to predict the completeness of CRS with AUC of 0.9 (95 % CI: 0.793-1.000) in internal validation cohort. The model can guide selection of suitable patients and predict potential benefits from CRS. The high predictive performance in predicting CRS completeness were validated in three external cohorts with AUC values of 0.906(95 % CI: 0.812-1.000), 0.960(95 % CI: 0.885-1.000), and 0.933 (95 % CI: 0.791-1.000), respectively. The novel DeAF framework can aid surgeons to select suitable PM patients for CRS and predict the completeness of CRS. The model can change surgical decision-making and provide potential benefits for PM patients.

A systematic review of generative AI approaches for medical image enhancement: Comparing GANs, transformers, and diffusion models.

Oulmalme C, Nakouri H, Jaafar F

pubmed logopapersJul 1 2025
Medical imaging is a vital diagnostic tool that provides detailed insights into human anatomy but faces challenges affecting its accuracy and efficiency. Advanced generative AI models offer promising solutions. Unlike previous reviews with a narrow focus, a comprehensive evaluation across techniques and modalities is necessary. This systematic review integrates the three state-of-the-art leading approaches, GANs, Diffusion Models, and Transformers, examining their applicability, methodologies, and clinical implications in improving medical image quality. Using the PRISMA framework, 63 studies from 989 were selected via Google Scholar and PubMed, focusing on GANs, Transformers, and Diffusion Models. Articles from ACM, IEEE Xplore, and Springer were analyzed. Generative AI techniques show promise in improving image resolution, reducing noise, and enhancing fidelity. GANs generate high-quality images, Transformers utilize global context, and Diffusion Models are effective in denoising and reconstruction. Challenges include high computational costs, limited dataset diversity, and issues with generalizability, with a focus on quantitative metrics over clinical applicability. This review highlights the transformative impact of GANs, Transformers, and Diffusion Models in advancing medical imaging. Future research must address computational and generalization challenges, emphasize open science, and validate these techniques in diverse clinical settings to unlock their full potential. These efforts could enhance diagnostic accuracy, lower costs, and improve patient outcome.

Uncertainty-aware deep learning for segmentation of primary tumor and pathologic lymph nodes in oropharyngeal cancer: Insights from a multi-center cohort.

De Biase A, Sijtsema NM, van Dijk LV, Steenbakkers R, Langendijk JA, van Ooijen P

pubmed logopapersJul 1 2025
Information on deep learning (DL) tumor segmentation accuracy on a voxel and a structure level is essential for clinical introduction. In a previous study, a DL model was developed for oropharyngeal cancer (OPC) primary tumor (PT) segmentation in PET/CT images and voxel-level predicted probabilities (TPM) quantifying model certainty were introduced. This study extended the network to simultaneously generate TPMs for PT and pathologic lymph nodes (PL) and explored whether structure-level uncertainty in TPMs predicts segmentation model accuracy in an independent external cohort. We retrospectively gathered PET/CT images and manual delineations of gross tumor volume of the PT (GTVp) and PL (GTVln) of 407 OPC patients treated with (chemo)radiation in our institute. The HECKTOR 2022 challenge dataset served as external test set. The pre-existing architecture was modified for multi-label segmentation. Multiple models were trained, and the non-binarized ensemble average of TPMs was considered per patient. Segmentation accuracy was quantified by surface and aggregate DSC, model uncertainty by coefficient of variation (CV) of multiple predictions. Predicted GTVp and GTVln segmentations in the external test achieved 0.75 and 0.70 aggregate DSC. Patient-specific CV and surface DSC showed a significant correlation for both structures (-0.54 and -0.66 for GTVp and GTVln) in the external set, indicating significant calibration. Significant accuracy versus uncertainty calibration was achieved for TPMs in both internal and external test sets, indicating the potential use of quantified uncertainty from TPMs to identify cases with lower GTVp and GTVln segmentation accuracy, independently of the dataset.

LUNETR: Language-Infused UNETR for precise pancreatic tumor segmentation in 3D medical image.

Shi Z, Zhang R, Wei X, Yu C, Xie H, Hu Z, Chen X, Zhang Y, Xie B, Luo Z, Peng W, Xie X, Li F, Long X, Li L, Hu L

pubmed logopapersJul 1 2025
The identification of early micro-lesions and adjacent blood vessels in CT scans plays a pivotal role in the clinical diagnosis of pancreatic cancer, considering its aggressive nature and high fatality rate. Despite the widespread application of deep learning methods for this task, several challenges persist: (1) the complex background environment in abdominal CT scans complicates the accurate localization of potential micro-tumors; (2) the subtle contrast between micro-lesions within pancreatic tissue and the surrounding tissues makes it challenging for models to capture these features accurately; and (3) tumors that invade adjacent blood vessels pose significant barriers to surgical procedures. To address these challenges, we propose LUNETR (Language-Infused UNETR), an advanced multimodal encoder model that combines textual and image information for precise medical image segmentation. The integration of an autoencoding language model with cross-attention enabling our model to effectively leverage semantic associations between textual and image data, thereby facilitating precise localization of potential pancreatic micro-tumors. Additionally, we designed a Multi-scale Aggregation Attention (MSAA) module to comprehensively capture both spatial and channel characteristics of global multi-scale image data, enhancing the model's capacity to extract features from micro-lesions embedded within pancreatic tissue. Furthermore, in order to facilitate precise segmentation of pancreatic tumors and nearby blood vessels and address the scarcity of multimodal medical datasets, we collaborated with Zhuzhou Central Hospital to construct a multimodal dataset comprising CT images and corresponding pathology reports from 135 pancreatic cancer patients. Our experimental results surpass current state-of-the-art models, with the incorporation of the semantic encoder improving the average Dice score for pancreatic tumor segmentation by 2.23 %. For the Medical Segmentation Decathlon (MSD) liver and lung cancer datasets, our model achieved an average Dice score improvement of 4.31 % and 3.67 %, respectively, demonstrating the efficacy of the LUNETR.

Deep Guess acceleration for explainable image reconstruction in sparse-view CT.

Loli Piccolomini E, Evangelista D, Morotti E

pubmed logopapersJul 1 2025
Sparse-view Computed Tomography (CT) is an emerging protocol designed to reduce X-ray dose radiation in medical imaging. Reconstructions based on the traditional Filtered Back Projection algorithm suffer from severe artifacts due to sparse data. In contrast, Model-Based Iterative Reconstruction (MBIR) algorithms, though better at mitigating noise through regularization, are too computationally costly for clinical use. This paper introduces a novel technique, denoted as the Deep Guess acceleration scheme, using a trained neural network both to quicken the regularized MBIR and to enhance the reconstruction accuracy. We integrate state-of-the-art deep learning tools to initialize a clever starting guess for a proximal algorithm solving a non-convex model and thus computing a (mathematically) interpretable solution image in a few iterations. Experimental results on real and synthetic CT images demonstrate the Deep Guess effectiveness in (very) sparse tomographic protocols, where it overcomes its mere variational counterpart and many data-driven approaches at the state of the art. We also consider a ground truth-free implementation and test the robustness of the proposed framework to noise.

Deformable image registration with strategic integration pyramid framework for brain MRI.

Zhang Y, Zhu Q, Xie B, Li T

pubmed logopapersJul 1 2025
Medical image registration plays a crucial role in medical imaging, with a wide range of clinical applications. In this context, brain MRI registration is commonly used in clinical practice for accurate diagnosis and treatment planning. In recent years, deep learning-based deformable registration methods have achieved remarkable results. However, existing methods have not been flexible and efficient in handling the feature relationships of anatomical structures at different levels when dealing with large deformations. To address this limitation, we propose a novel strategic integration registration network based on the pyramid structure. Our strategy mainly includes two aspects of integration: fusion of features at different scales, and integration of different neural network structures. Specifically, we design a CNN encoder and a Transformer decoder to efficiently extract and enhance both global and local features. Moreover, to overcome the error accumulation issue inherent in pyramid structures, we introduce progressive optimization iterations at the lowest scale for deformation field generation. This approach more efficiently handles the spatial relationships of images while improving accuracy. We conduct extensive evaluations across multiple brain MRI datasets, and experimental results show that our method outperforms other deep learning-based methods in terms of registration accuracy and robustness.

Multi-modal MRI synthesis with conditional latent diffusion models for data augmentation in tumor segmentation.

Kebaili A, Lapuyade-Lahorgue J, Vera P, Ruan S

pubmed logopapersJul 1 2025
Multimodality is often necessary for improving object segmentation tasks, especially in the case of multilabel tasks, such as tumor segmentation, which is crucial for clinical diagnosis and treatment planning. However, a major challenge in utilizing multimodality with deep learning remains: the limited availability of annotated training data, primarily due to the time-consuming acquisition process and the necessity for expert annotations. Although deep learning has significantly advanced many tasks in medical imaging, conventional augmentation techniques are often insufficient due to the inherent complexity of volumetric medical data. To address this problem, we propose an innovative slice-based latent diffusion architecture for the generation of 3D multi-modal images and their corresponding multi-label masks. Our approach enables the simultaneous generation of the image and mask in a slice-by-slice fashion, leveraging a positional encoding and a Latent Aggregation module to maintain spatial coherence and capture slice sequentiality. This method effectively reduces the computational complexity and memory demands typically associated with diffusion models. Additionally, we condition our architecture on tumor characteristics to generate a diverse array of tumor variations and enhance texture using a refining module that acts like a super-resolution mechanism, mitigating the inherent blurriness caused by data scarcity in the autoencoder. We evaluate the effectiveness of our synthesized volumes using the BRATS2021 dataset to segment the tumor with three tissue labels and compare them with other state-of-the-art diffusion models through a downstream segmentation task, demonstrating the superior performance and efficiency of our method. While our primary application is tumor segmentation, this method can be readily adapted to other modalities. Code is available here : https://github.com/Arksyd96/multi-modal-mri-and-mask-synthesis-with-conditional-slice-based-ldm.

CZT-based photon-counting-detector CT with deep-learning reconstruction: image quality and diagnostic confidence for lung tumor assessment.

Sasaki T, Kuno H, Nomura K, Muramatsu Y, Aokage K, Samejima J, Taki T, Goto E, Wakabayashi M, Furuya H, Taguchi H, Kobayashi T

pubmed logopapersJul 1 2025
This is a preliminary analysis of one of the secondary endpoints in the prospective study cohort. The aim of this study is to assess the image quality and diagnostic confidence for lung cancer of CT images generated by using cadmium-zinc-telluride (CZT)-based photon-counting-detector-CT (PCD-CT) and comparing these super-high-resolution (SHR) images with conventional normal-resolution (NR) CT images. Twenty-five patients (median age 75 years, interquartile range 66-78 years, 18 men and 7 women) with 29 lung nodules overall (including two patients with 4 and 2 nodules, respectively) were enrolled to undergo PCD-CT. Three types of images were reconstructed: a 512 × 512 matrix with adaptive iterative dose reduction 3D (AIDR 3D) as the NR<sub>AIDR3D</sub> image, a 1024 × 1024 matrix with AIDR 3D as the SHR<sub>AIDR3D</sub> image, and a 1024 × 1024 matrix with deep-learning reconstruction (DLR) as the SHR<sub>DLR</sub> image. For qualitative analysis, two radiologists evaluated the matched reconstructed series twice (NR<sub>AIDR3D</sub> vs. SHR<sub>AIDR3D</sub> and SHR<sub>AIDR3D</sub> vs. SHR<sub>DLR</sub>) and scored the presence of imaging findings, such as spiculation, lobulation, appearance of ground-glass opacity or air bronchiologram, image quality, and diagnostic confidence, using a 5-point Likert scale. For quantitative analysis, contrast-to-noise ratios (CNRs) of the three images were compared. In the qualitative analysis, compared to NR<sub>AIDR3D</sub>, SHR<sub>AIDR3D</sub> yielded higher image quality and diagnostic confidence, except for image noise (all P < 0.01). In comparison with SHR<sub>AIDR3D</sub>, SHR<sub>DLR</sub> yielded higher image quality and diagnostic confidence (all P < 0.01). In the quantitative analysis, CNRs in the modified NR<sub>AIDR3D</sub> and SHR<sub>DLR</sub> groups were higher than those in the SHR<sub>AIDR3D</sub> group (P = 0.003, <0.001, respectively). In PCD-CT, SHR<sub>DLR</sub> images provided the highest image quality and diagnostic confidence for lung tumor evaluation, followed by SHR<sub>AIDR3D</sub> and NR<sub>AIDR3D</sub> images. DLR demonstrated superior noise reduction compared to other reconstruction methods.

Added value of artificial intelligence for the detection of pelvic and hip fractures.

Jaillat A, Cyteval C, Baron Sarrabere MP, Ghomrani H, Maman Y, Thouvenin Y, Pastor M

pubmed logopapersJul 1 2025
To assess the added value of artificial intelligence (AI) for radiologists and emergency physicians in the radiographic detection of pelvic fractures. In this retrospective study, one junior radiologist reviewed 940 X-rays of patients admitted to emergency for a fall with suspicion of pelvic fracture between March 2020 and June 2021. The radiologist analyzed the X-rays alone and then using an AI system (BoneView). In a random sample of 100 exams, the same procedure was repeated alongside five other readers (three radiologists and two emergency physicians with 3-30 years of experience). The reference diagnosis was based on the patient's full set of medical imaging exams and medical records in the months following emergency admission. A total of 633 confirmed pelvic fractures (64.8% from hip and 35.2% from pelvic ring) in 940 patients and 68 pelvic fractures (60% from hip and 40% from pelvic ring) in the 100-patient sample were included. In the whole dataset, the junior radiologist achieved a significant sensitivity improvement with AI assistance (Se<sub>-PELVIC</sub> = 77.25% to 83.73%; p < 0.001, Se<sub>-HIP</sub> 93.24 to 96.49%; p < 0.001 and Se<sub>-PELVIC RING</sub> 54.60% to 64.50%; p < 0.001). However, there was a significant decrease in specificity with AI assistance (Spe<sub>-PELVIC</sub> = 95.24% to 93.25%; p = 0.005 and Spe<sub>-HIP</sub> = 98.30% to 96.90%; p = 0.005). In the 100-patient sample, the two emergency physicians obtained an improvement in fracture detection sensitivity across the pelvic area + 14.70% (p = 0.0011) and + 10.29% (p < 0.007) respectively without a significant decrease in specificity. For hip fractures, E1's sensitivity increased from 59.46% to 70.27% (p = 0.04), and E2's sensitivity increased from 78.38% to 86.49% (p = 0.08). For pelvic ring fractures, E1's sensitivity increased from 12.90% to 32.26% (p = 0.012), and E2's sensitivity increased from 19.35% to 32.26% (p = 0.043). AI improved the diagnostic performance for emergency physicians and radiologists with limited experience in pelvic fracture screening.

TCDE-Net: An unsupervised dual-encoder network for 3D brain medical image registration.

Yang X, Li D, Deng L, Huang S, Wang J

pubmed logopapersJul 1 2025
Medical image registration is a critical task in aligning medical images from different time points, modalities, or individuals, essential for accurate diagnosis and treatment planning. Despite significant progress in deep learning-based registration methods, current approaches still face considerable challenges, such as insufficient capture of local details, difficulty in effectively modeling global contextual information, and limited robustness in handling complex deformations. These limitations hinder the precision of high-resolution registration, particularly when dealing with medical images with intricate structures. To address these issues, this paper presents a novel registration network (TCDE-Net), an unsupervised medical image registration method based on a dual-encoder architecture. The dual encoders complement each other in feature extraction, enabling the model to effectively handle large-scale nonlinear deformations and capture intricate local details, thereby enhancing registration accuracy. Additionally, the detail-enhancement attention module aids in restoring fine-grained features, improving the network's capability to address complex deformations such as those at gray-white matter boundaries. Experimental results on the OASIS, IXI, and Hammers-n30r95 3D brain MR dataset demonstrate that this method outperforms commonly used registration techniques across multiple evaluation metrics, achieving superior performance and robustness. Our code is available at https://github.com/muzidongxue/TCDE-Net.
Page 225 of 3623619 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.