Sort by:
Page 225 of 2252247 results

Radiomics and Deep Learning as Important Techniques of Artificial Intelligence - Diagnosing Perspectives in Cytokeratin 19 Positive Hepatocellular Carcinoma.

Wang F, Yan C, Huang X, He J, Yang M, Xian D

pubmed logopapersJan 1 2025
Currently, there are inconsistencies among different studies on preoperative prediction of Cytokeratin 19 (CK19) expression in HCC using traditional imaging, radiomics, and deep learning. We aimed to systematically analyze and compare the performance of non-invasive methods for predicting CK19-positive HCC, thereby providing insights for the stratified management of HCC patients. A comprehensive literature search was conducted in PubMed, EMBASE, Web of Science, and the Cochrane Library from inception to February 2025. Two investigators independently screened and extracted data based on inclusion and exclusion criteria. Eligible studies were included, and key findings were summarized in tables to provide a clear overview. Ultimately, 22 studies involving 3395 HCC patients were included. 72.7% (16/22) focused on traditional imaging, 36.4% (8/22) on radiomics, 9.1% (2/22) on deep learning, and 54.5% (12/22) on combined models. The magnetic resonance imaging was the most commonly used imaging modality (19/22), and over half of the studies (12/22) were published between 2022 and 2025. Moreover, 27.3% (6/22) were multicenter studies, 36.4% (8/22) included a validation set, and only 13.6% (3/22) were prospective. The area under the curve (AUC) range of using clinical and traditional imaging was 0.560 to 0.917. The AUC ranges of radiomics were 0.648 to 0.951, and the AUC ranges of deep learning were 0.718 to 0.820. Notably, the AUC ranges of combined models of clinical, imaging, radiomics and deep learning were 0.614 to 0.995. Nevertheless, the multicenter external data were limited, with only 13.6% (3/22) incorporating validation. The combined model integrating traditional imaging, radiomics and deep learning achieves excellent potential and performance for predicting CK19 in HCC. Based on current limitations, future research should focus on building an easy-to-use dynamic online tool, combining multicenter-multimodal imaging and advanced deep learning approaches to enhance the accuracy and robustness of model predictions.

3D-MRI brain glioma intelligent segmentation based on improved 3D U-net network.

Wang T, Wu T, Yang D, Xu Y, Lv D, Jiang T, Wang H, Chen Q, Xu S, Yan Y, Lin B

pubmed logopapersJan 1 2025
To enhance glioma segmentation, a 3D-MRI intelligent glioma segmentation method based on deep learning is introduced. This method offers significant guidance for medical diagnosis, grading, and treatment strategy selection. Glioma case data were sourced from the BraTS2023 public dataset. Firstly, we preprocess the dataset, including 3D clipping, resampling, artifact elimination and normalization. Secondly, in order to enhance the perception ability of the network to different scale features, we introduce the space pyramid pool module. Then, by making the model focus on glioma details and suppressing irrelevant background information, we propose a multi-scale fusion attention mechanism; And finally, to address class imbalance and enhance learning of misclassified voxels, a combination of Dice and Focal loss functions was employed, creating a loss function, this method not only maintains the accuracy of segmentation, It also improves the recognition of challenge samples, thus improving the accuracy and generalization of the model in glioma segmentation. Experimental findings reveal that the enhanced 3D U-Net network model stabilizes training loss at 0.1 after 150 training iterations. The refined model demonstrates superior performance with the highest DSC, Recall, and Precision values of 0.7512, 0.7064, and 0.77451, respectively. In Whole Tumor (WT) segmentation, the Dice Similarity Coefficient (DSC), Recall, and Precision scores are 0.9168, 0.9426, and 0.9375, respectively. For Core Tumor (TC) segmentation, these scores are 0.8954, 0.9014, and 0.9369, respectively. In Enhanced Tumor (ET) segmentation, the method achieves DSC, Recall, and Precision values of 0.8674, 0.9045, and 0.9011, respectively. The DSC, Recall, and Precision indices in the WT, TC, and ET segments using this method are the highest recorded, significantly enhancing glioma segmentation. This improvement bolsters the accuracy and reliability of diagnoses, ultimately providing a scientific foundation for clinical diagnosis and treatment.

Auxiliary Diagnosis of Pulmonary Nodules' Benignancy and Malignancy Based on Machine Learning: A Retrospective Study.

Wang W, Yang B, Wu H, Che H, Tong Y, Zhang B, Liu H, Chen Y

pubmed logopapersJan 1 2025
Lung cancer, one of the most lethal malignancies globally, often presents insidiously as pulmonary nodules. Its nonspecific clinical presentation and heterogeneous imaging characteristics hinder accurate differentiation between benign and malignant lesions, while biopsy's invasiveness and procedural constraints underscore the critical need for non-invasive early diagnostic approaches. In this retrospective study, we analyzed outpatient and inpatient records from the First Medical Center of Chinese PLA General Hospital between 2011 and 2021, focusing on pulmonary nodules measuring 5-30mm on CT scans without overt signs of malignancy. Pathological examination served as the reference standard. Comparative experiments evaluated SVM, RF, XGBoost, FNN, and Atten_FNN using five-fold cross-validation to assess AUC, sensitivity, and specificity. The dataset was split 70%/30%, and stratified five-fold cross-validation was applied to the training set. The optimal model was interpreted with SHAP to identify the most influential predictive features. This study enrolled 3355 patients, including 1156 with benign and 2199 with malignant pulmonary nodules. The Atten_FNN model demonstrated superior performance in five-fold cross-validation, achieving an AUC of 0.82, accuracy of 0.75, sensitivity of 0.77, and F1 score of 0.80. SHAP analysis revealed key predictive factors: demographic variables (age, sex, BMI), CT-derived features (maximum nodule diameter, morphology, density, calcification, ground-glass opacity), and laboratory biomarkers (neuroendocrine markers, carcinoembryonic antigen). This study integrates electronic medical records and pathology data to predict pulmonary nodule malignancy using machine/deep learning models. SHAP-based interpretability analysis uncovered key clinical determinants. Acknowledging limitations in cross-center generalizability, we propose the development of a multimodal diagnostic systems that combines CT imaging and radiomics, to be validated in multi-center prospective cohorts to facilitate clinical translation. This framework establishes a novel paradigm for early precision diagnosis of lung cancer.

MRI based early Temporal Lobe Epilepsy detection using DGWO based optimized HAETN and Fuzzy-AAL Segmentation Framework (FASF).

Khan H, Alutaibi AI, Tejani GG, Sharma SK, Khan AR, Ahmad F, Mousavirad SJ

pubmed logopapersJan 1 2025
This work aims to promote early and accurate diagnosis of Temporal Lobe Epilepsy (TLE) by developing state-of-the-art deep learning techniques, with the goal of minimizing the consequences of epilepsy on individuals and society. Current approaches for TLE detection have drawbacks, including applicability to particular MRI sequences, moderate ability to determine the side of the onset zones, and weak cross-validation with different patient groups, which hampers their practical use. To overcome these difficulties, a new Hybrid Attention-Enhanced Transformer Network (HAETN) is introduced for early TLE diagnosis. This approach uses newly developed Fuzzy-AAL Segmentation Framework (FASF) which is a combination of Fuzzy Possibilistic C-Means (FPCM) algorithm for segmentation of tissue and AAL labelling for labelling of tissues. Furthermore, an effective feature selection method is proposed using the Dipper- grey wolf optimization (DGWO) algorithm to improve the performance of the proposed model. The performance of the proposed method is thoroughly assessed by accuracy, sensitivity, and F1-score. The performance of the suggested approach is evaluated on the Temporal Lobe Epilepsy-UNAM MRI Dataset, where it attains an accuracy of 98.61%, a sensitivity of 99.83%, and F1-score of 99.82%, indicating its efficiency and applicability in clinical practice.

Ensuring Fairness in Detecting Mild Cognitive Impairment with MRI.

Tong B, Edwards T, Yang S, Hou B, Tarzanagh DA, Urbanowicz RJ, Moore JH, Ritchie MD, Davatzikos C, Shen L

pubmed logopapersJan 1 2024
Machine learning (ML) algorithms play a crucial role in the early and accurate diagnosis of Alzheimer's Disease (AD), which is essential for effective treatment planning. However, existing methods are not well-suited for identifying Mild Cognitive Impairment (MCI), a critical transitional stage between normal aging and AD. This inadequacy is primarily due to label imbalance and bias from different sensitve attributes in MCI classification. To overcome these challenges, we have designed an end-to-end fairness-aware approach for label-imbalanced classification, tailored specifically for neuroimaging data. This method, built on the recently developed FACIMS framework, integrates into STREAMLINE, an automated ML environment. We evaluated our approach against nine other ML algorithms and found that it achieves comparable balanced accuracy to other methods while prioritizing fairness in classifications with five different sensitive attributes. This analysis contributes to the development of equitable and reliable ML diagnostics for MCI detection.

Enhancement of Fairness in AI for Chest X-ray Classification.

Jackson NJ, Yan C, Malin BA

pubmed logopapersJan 1 2024
The use of artificial intelligence (AI) in medicine has shown promise to improve the quality of healthcare decisions. However, AI can be biased in a manner that produces unfair predictions for certain demographic subgroups. In MIMIC-CXR, a publicly available dataset of over 300,000 chest X-ray images, diagnostic AI has been shown to have a higher false negative rate for racial minorities. We evaluated the capacity of synthetic data augmentation, oversampling, and demographic-based corrections to enhance the fairness of AI predictions. We show that adjusting unfair predictions for demographic attributes, such as race, is ineffective at improving fairness or predictive performance. However, using oversampling and synthetic data augmentation to modify disease prevalence reduced such disparities by 74.7% and 10.6%, respectively. Moreover, such fairness gains were accomplished without reduction in performance (95% CI AUC: [0.816, 0.820] versus [0.810, 0.819] versus [0.817, 0.821] for baseline, oversampling, and augmentation, respectively).

Integrating AI into Clinical Workflows: A Simulation Study on Implementing AI-aided Same-day Diagnostic Testing Following an Abnormal Screening Mammogram.

Lin Y, Hoyt AC, Manuel VG, Inkelas M, Maehara CK, Ayvaci MUS, Ahsen ME, Hsu W

pubmed logopapersJan 1 2024
Artificial intelligence (AI) shows promise in clinical tasks, yet its integration into workflows remains underexplored. This study proposes an AI-aided same-day diagnostic imaging workup to reduce recall rates following abnormal screening mammograms and alleviate patient anxiety while waiting for the diagnostic examinations. Using discrete simulation, we found minimal disruption to the workflow (a 4% reduction in daily patient volume or a 2% increase in operating time) under specific conditions: operation from 9 am to 12 pm with all radiologists managing all patient types (screenings, diagnostics, and biopsies). Costs specific to the AI-aided same-day diagnostic workup include AI software expenses and potential losses from unused pre-reserved slots for same-day diagnostic workups. These simulation findings can inform the implementation of an AI-aided same-day diagnostic workup, with future research focusing on its potential benefits, including improved patient satisfaction, reduced anxiety, lower recall rates, and shorter time to cancer diagnoses and treatment.
Page 225 of 2252247 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.