Sort by:
Page 223 of 2332330 results

Preoperative prediction of malignant transformation in sinonasal inverted papilloma: a novel MRI-based deep learning approach.

Ding C, Wen B, Han Q, Hu N, Kang Y, Wang Y, Wang C, Zhang L, Xian J

pubmed logopapersMay 12 2025
To develop a novel MRI-based deep learning (DL) diagnostic model, utilizing multicenter large-sample data, for the preoperative differentiation of sinonasal inverted papilloma (SIP) from SIP-transformed squamous cell carcinoma (SIP-SCC). This study included 568 patients from four centers with confirmed SIP (n = 421) and SIP-SCC (n = 147). Deep learning models were built using T1WI, T2WI, and CE-T1WI. A combined model was constructed by integrating these features through an attention mechanism. The diagnostic performance of radiologists, both with and without the model's assistance, was compared. Model performance was evaluated through receiver operating characteristic (ROC) analysis, calibration curves, and decision curve analysis (DCA). The combined model demonstrated superior performance in differentiating SIP from SIP-SCC, achieving AUCs of 0.954, 0.897, and 0.859 in the training, internal validation, and external validation cohorts, respectively. It showed optimal accuracy, stability, and clinical benefit, as confirmed by Brier scores and calibration curves. The diagnostic performance of radiologists, especially for less experienced ones, was significantly improved with model assistance. The MRI-based deep learning model enhances the capability to predict malignant transformation of sinonasal inverted papilloma before surgery. By facilitating earlier diagnosis and promoting timely pathological examination or surgical intervention, this approach holds the potential to enhance patient prognosis. Questions Sinonasal inverted papilloma (SIP) is prone to malignant transformation locally, leading to poor prognosis; current diagnostic methods are invasive and inaccurate, necessitating effective preoperative differentiation. Findings The MRI-based deep learning model accurately diagnoses malignant transformations of SIP, enabling junior radiologists to achieve greater clinical benefits with the assistance of the model. Clinical relevance A novel MRI-based deep learning model enhances the capability of preoperative diagnosis of malignant transformation in sinonasal inverted papilloma, providing a non-invasive tool for personalized treatment planning.

Enhancing noninvasive pancreatic cystic neoplasm diagnosis with multimodal machine learning.

Huang W, Xu Y, Li Z, Li J, Chen Q, Huang Q, Wu Y, Chen H

pubmed logopapersMay 12 2025
Pancreatic cystic neoplasms (PCNs) are a complex group of lesions with a spectrum of malignancy. Accurate differentiation of PCN types is crucial for patient management, as misdiagnosis can result in unnecessary surgeries or treatment delays, affecting the quality of life. The significance of developing a non-invasive, accurate diagnostic model is underscored by the need to improve patient outcomes and reduce the impact of these conditions. We developed a machine learning model capable of accurately identifying different types of PCNs in a non-invasive manner, by using a dataset comprising 449 MRI and 568 CT scans from adult patients, spanning from 2009 to 2022. The study's results indicate that our multimodal machine learning algorithm, which integrates both clinical and imaging data, significantly outperforms single-source data algorithms. Specifically, it demonstrated state-of-the-art performance in classifying PCN types, achieving an average accuracy of 91.2%, precision of 91.7%, sensitivity of 88.9%, and specificity of 96.5%. Remarkably, for patients with mucinous cystic neoplasms (MCNs), regardless of undergoing MRI or CT imaging, the model achieved a 100% prediction accuracy rate. It indicates that our non-invasive multimodal machine learning model offers strong support for the early screening of MCNs, and represents a significant advancement in PCN diagnosis for improving clinical practice and patient outcomes. We also achieved the best results on an additional pancreatic cancer dataset, which further proves the generality of our model.

Automated scout-image-based estimation of contrast agent dosing: a deep learning approach

Schirrmeister, R., Taleb, L., Friemel, P., Reisert, M., Bamberg, F., Weiss, J., Rau, A.

medrxiv logopreprintMay 12 2025
We developed and tested a deep-learning-based algorithm for the approximation of contrast agent dosage based on computed tomography (CT) scout images. We prospectively enrolled 817 patients undergoing clinically indicated CT imaging, predominantly of the thorax and/or abdomen. Patient weight was collected by study staff prior to the examination 1) with a weight scale and 2) as self-reported. Based on the scout images, we developed an EfficientNet convolutional neural network pipeline to estimate the optimal contrast agent dose based on patient weight and provide a browser-based user interface as a versatile open-source tool to account for different contrast agent compounds. We additionally analyzed the body-weight-informative CT features by synthesizing representative examples for different weights using in-context learning and dataset distillation. The cohort consisted of 533 thoracic, 70 abdominal and 229 thoracic-abdominal CT scout scans. Self-reported patient weight was statistically significantly lower than manual measurements (75.13 kg vs. 77.06 kg; p < 10-5, Wilcoxon signed-rank test). Our pipeline predicted patient weight with a mean absolute error of 3.90 {+/-} 0.20 kg (corresponding to a roughly 4.48 - 11.70 ml difference in contrast agent depending on the agent) in 5-fold cross-validation and is publicly available at https://tinyurl.com/ct-scout-weight. Interpretability analysis revealed that both larger anatomical shape and higher overall attenuation were predictive of body weight. Our open-source deep learning pipeline allows for the automatic estimation of accurate contrast agent dosing based on scout images in routine CT imaging studies. This approach has the potential to streamline contrast agent dosing workflows, improve efficiency, and enhance patient safety by providing quick and accurate weight estimates without additional measurements or reliance on potentially outdated records. The models performance may vary depending on patient positioning and scout image quality and the approach requires validation on larger patient cohorts and other clinical centers. Author SummaryAutomation of medical workflows using AI has the potential to increase reproducibility while saving costs and time. Here, we investigated automating the estimation of the required contrast agent dosage for CT examinations. We trained a deep neural network to predict the body weight from the initial 2D CT Scout images that are required prior to the actual CT examination. The predicted weight is then converted to a contrast agent dosage based on contrast-agent-specific conversion factors. To facilitate application in clinical routine, we developed a user-friendly browser-based user interface that allows clinicians to select a contrast agent or input a custom conversion factor to receive dosage suggestions, with local data processing in the browser. We also investigate what image characteristics predict body weight and find plausible relationships such as higher attenuation and larger anatomical shapes correlating with higher body weights. Our work goes beyond prior work by implementing a single model for a variety of anatomical regions, providing an accessible user interface and investigating the predictive characteristics of the images.

LiteMIL: A Computationally Efficient Transformer-Based MIL for Cancer Subtyping on Whole Slide Images.

Kussaibi, H.

medrxiv logopreprintMay 12 2025
PurposeAccurate cancer subtyping is crucial for effective treatment; however, it presents challenges due to overlapping morphology and variability among pathologists. Although deep learning (DL) methods have shown potential, their application to gigapixel whole slide images (WSIs) is often hindered by high computational demands and the need for efficient, context-aware feature aggregation. This study introduces LiteMIL, a computationally efficient transformer-based multiple instance learning (MIL) network combined with Phikon, a pathology-tuned self-supervised feature extractor, for robust and scalable cancer subtyping on WSIs. MethodsInitially, patches were extracted from TCGA-THYM dataset (242 WSIs, six subtypes) and subsequently fed in real-time to Phikon for feature extraction. To train MILs, features were arranged into uniform bags using a chunking strategy that maintains tissue context while increasing training data. LiteMIL utilizes a learnable query vector within an optimized multi-head attention module for effective feature aggregation. The models performance was evaluated against established MIL methods on the Thymic Dataset and three additional TCGA datasets (breast, lung, and kidney cancer). ResultsLiteMIL achieved 0.89 {+/-} 0.01 F1 score and 0.99 AUC on Thymic dataset, outperforming other MILs. LiteMIL demonstrated strong generalizability across the external datasets, scoring the best on breast and kidney cancer datasets. Compared to TransMIL, LiteMIL significantly reduces training time and GPU memory usage. Ablation studies confirmed the critical role of the learnable query and layer normalization in enhancing performance and stability. ConclusionLiteMIL offers a resource-efficient, robust solution. Its streamlined architecture, combined with the compact Phikon features, makes it suitable for integrating into routine histopathological workflows, particularly in resource-limited settings.

MRI-Based Diagnostic Model for Alzheimer's Disease Using 3D-ResNet.

Chen D, Yang H, Li H, He X, Mu H

pubmed logopapersMay 12 2025
Alzheimer's disease (AD), a progressive neurodegenerative disorder, is the leading cause of dementia worldwide and remains incurable once it begins. Therefore, early and accurate diagnosis is essential for effective intervention. Leveraging recent advances in deep learning, this study proposes a novel diagnostic model based on the 3D-ResNet architecture to classify three cognitive states: AD, mild cognitive impairment (MCI), and cognitively normal (CN) individuals, using MRI data. The model integrates the strengths of ResNet and 3D convolutional neural networks (3D-CNN), and incorporates a special attention mechanism(SAM) within the residual structure to enhance feature representation. The study utilized the ADNI dataset, comprising 800 brain MRI scans. The dataset was split in a 7:3 ratio for training and testing, and the network was trained using data augmentation and cross-validation strategies. The proposed model achieved 92.33% accuracy in the three-class classification task, and 97.61%, 95.83%, and 93.42% accuracy in binary classifications of AD vs. CN, AD vs. MCI, and CN vs. MCI, respectively, outperforming existing state-of-the-art methods. Furthermore, Grad-CAM heatmaps and 3D MRI reconstructions revealed that the cerebral cortex and hippocampus are critical regions for AD classification. These findings demonstrate a robust and interpretable AI-based diagnostic framework for AD, providing valuable technical support for its timely detection and clinical intervention.

A systematic review and meta-analysis of the utility of quantitative, imaging-based approaches to predict radiation-induced toxicity in lung cancer patients.

Tong D, Midroni J, Avison K, Alnassar S, Chen D, Parsa R, Yariv O, Liu Z, Ye XY, Hope A, Wong P, Raman S

pubmed logopapersMay 11 2025
To conduct a systematic review and meta-analysis of the performance of radiomics, dosiomics and machine learning in generating toxicity prediction in thoracic radiotherapy. An electronic database search was conducted and dual-screened by independent authors to identify eligible studies for systematic review and meta-analysis. Data was extracted and study quality was assessed using TRIPOD for machine learning studies, RQS for Radiomics and RoB for dosiomics. 10,703 studies were identified, and 5252 entered screening. 106 studies including 23,373 patients were eligible for systematic review. Primary toxicity predicted was radiation pneumonitis (81), followed by esophagitis (12) and lymphopenia (4). Fourty-two studies studying radiation pneumonitis were eligible for meta-analysis, with pooled area-under-curve (AUC) of 0.82 (95% CI 0.79-0.85). Studies with machine learning had the best performance, with classical and deep learning models having similar performance. There is a trend towards an improvement of the performance of models with the year of publication. There is variability in study quality among the three study categories and dosiomic studies scored the highest among these. Publication bias was not observed. The majority of existing literature using radiomics, dosiomics and machine learning has focused on radiation pneumonitis prediction. Future research should focus on toxicity prediction of other organs at risk and the adoption of these models into clinical practice.

Study on predicting breast cancer Ki-67 expression using a combination of radiomics and deep learning based on multiparametric MRI.

Wang W, Wang Z, Wang L, Li J, Pang Z, Qu Y, Cui S

pubmed logopapersMay 11 2025
To develop a multiparametric breast MRI radiomics and deep learning-based multimodal model for predicting preoperative Ki-67 expression status in breast cancer, with the potential to advance individualized treatment and precision medicine for breast cancer patients. We included 176 invasive breast cancer patients who underwent breast MRI and had Ki-67 results. The dataset was randomly split into training (70 %) and test (30 %) sets. Features from T1-weighted imaging (T1WI), diffusion-weighted imaging (DWI), T2-weighted imaging (T2WI), and dynamic contrast-enhanced MRI (DCE-MRI) were fused. Separate models were created for each sequence: T1, DWI, T2, and DCE. A multiparametric MRI (mp-MRI) model was then developed by combining features from all sequences. Models were trained using five-fold cross-validation and evaluated on the test set with receiver operating characteristic (ROC) curve area under the curve (AUC), accuracy, sensitivity, specificity, positive predictive value, negative predictive value, and F1 score. Delong's test compared the mp-MRI model with the other models, with P < 0.05 indicating statistical significance. All five models demonstrated good performance, with AUCs of 0.83 for the T1 model, 0.85 for the DWI model, 0.90 for the T2 model, 0.92 for the DCE model, and 0.96 for the mp-MRI model. Delong's test indicated statistically significant differences between the mp-MRI model and the other four models, with P values < 0.05. The multiparametric breast MRI radiomics and deep learning-based multimodal model performs well in predicting preoperative Ki-67 expression status in breast cancer.

Altered intrinsic ignition dynamics linked to Amyloid-β and tau pathology in Alzheimer's disease

Patow, G. A., Escrichs, A., Martinez-Molina, N., Ritter, P., Deco, G.

biorxiv logopreprintMay 11 2025
Alzheimer's disease (AD) progressively alters brain structure and function, yet the associated changes in large-scale brain network dynamics remain poorly understood. We applied the intrinsic ignition framework to resting-state functional MRI (rs-fMRI) data from AD patients, individuals with mild cognitive impairment (MCI), and cognitively healthy controls (HC) to elucidate how AD shapes intrinsic brain activity. We assessed node-metastability at the whole-brain level and in 7 canonical resting-state networks (RSNs). Our results revealed a progressive decline in dynamical complexity across the disease continuum. HC exhibited the highest node-metastability, whereas it was substantially reduced in MCI and AD patients. The cortical hierarchy of information processing was also disrupted, indicating that rich-club hubs may be selectively affected in AD progression. Furthermore, we used linear mixed-effects models to evaluate the influence of Amyloid-{beta} (A{beta}) and tau pathology on brain dynamics at both regional and whole-brain levels. We found significant associations between both protein burdens and alterations in node metastability. Lastly, a machine learning classifier trained on brain dynamics, A{beta}, and tau burden features achieved high accuracy in discriminating between disease stages. Together, our findings highlight the progressive disruption of intrinsic ignition across whole-brain and RSNs in AD and support the use of node-metastability in conjunction with proteinopathy as a novel framework for tracking disease progression.

Deeply Explainable Artificial Neural Network

David Zucker

arxiv logopreprintMay 10 2025
While deep learning models have demonstrated remarkable success in numerous domains, their black-box nature remains a significant limitation, especially in critical fields such as medical image analysis and inference. Existing explainability methods, such as SHAP, LIME, and Grad-CAM, are typically applied post hoc, adding computational overhead and sometimes producing inconsistent or ambiguous results. In this paper, we present the Deeply Explainable Artificial Neural Network (DxANN), a novel deep learning architecture that embeds explainability ante hoc, directly into the training process. Unlike conventional models that require external interpretation methods, DxANN is designed to produce per-sample, per-feature explanations as part of the forward pass. Built on a flow-based framework, it enables both accurate predictions and transparent decision-making, and is particularly well-suited for image-based tasks. While our focus is on medical imaging, the DxANN architecture is readily adaptable to other data modalities, including tabular and sequential data. DxANN marks a step forward toward intrinsically interpretable deep learning, offering a practical solution for applications where trust and accountability are essential.

Intra- and Peritumoral Radiomics Based on Ultrasound Images for Preoperative Differentiation of Follicular Thyroid Adenoma, Carcinoma, and Follicular Tumor With Uncertain Malignant Potential.

Fu Y, Mei F, Shi L, Ma Y, Liang H, Huang L, Fu R, Cui L

pubmed logopapersMay 10 2025
Differentiating between follicular thyroid adenoma (FTA), carcinoma (FTC), and follicular tumor with uncertain malignant potential (FT-UMP) remains challenging due to their overlapping ultrasound characteristics. This retrospective study aimed to enhance preoperative diagnostic accuracy by utilizing intra- and peritumoral radiomics based on ultrasound images. We collected post-thyroidectomy ultrasound images from 774 patients diagnosed with FTA (n = 429), FTC (n = 158), or FT-UMP (n = 187) between January 2018 and December 2023. Six peritumoral regions were expanded by 5%-30% in 5% increments, with the segment-anything model utilizing prompt learning to detect the field of view and constrain the expanded boundaries. A stepwise classification strategy addressing three tasks was implemented: distinguishing FTA from the other types (task 1), differentiating FTC from FT-UMP (task 2), and classifying all three tumors. Diagnostic models were developed by combining radiomic features from tumor and peritumoral regions with clinical characteristics. Clinical characteristics combined with intratumoral and 5% peritumoral radiomic features performed best across all tasks (Test set: area under the curves, 0.93 for task 1 and 0.90 for task 2; diagnostic accuracy, 79.9%). The DeLong test indicated that all peritumoral radiomics significantly improved intratumoral radiomics performance and clinical characteristics (p < 0.04). The 5% peritumoral regions showed the best performance, though not all results were significant (p = 0.01-0.91). Ultrasound-based intratumoral and peritumoral radiomics can significantly enhance preoperative diagnostic accuracy for FTA, FTC, and FT-UMP, leading to improved treatment strategies and patient outcomes. Furthermore, the 5% peritumoral area may indicate regions of potential tumor invasion requiring further investigation.
Page 223 of 2332330 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.