Sort by:
Page 22 of 35341 results

Next-generation machine learning model to measure the Norberg angle on canine hip radiographs increases accuracy and time to completion.

Hansen GC, Yao Y, Fischetti AJ, Gonzalez A, Porter I, Todhunter RJ, Zhang Y

pubmed logopapersJun 16 2025
To apply machine learning (ML) to measure the Norberg angle (NA) on canine ventrodorsal hip-extended pelvic radiographs. In this observational study, an NA-AI model was trained on real and synthetic radiographs. Additional radiographs were used for validation and testing. Each NA was predicted using a hybrid architecture derived from 2 ML vision models. The NAs were measured by 4 authors, and the model all were compared to each other. The time taken to correct the NAs predicted by the model was compared to unassisted human measurements. The NA-AI model was trained on 733 real and 1,474 synthetic radiographs; 105 real radiographs were used for validation and 128 for testing. The mean absolute error between each human measurement ranged from 3° to 10° ± SD = 3° to 10° with an intraclass correlation between humans of 0.38 to 0.92. The mean absolute error between the NA-AI model prediction and the human measurements was 5° to 6° ± SD = 5° (intraclass correlation, 0.39 to 0.94). Bland-Altman plots showed good agreement between human and AI measurements when the NAs were greater than 80°. The time taken to check the accuracy of the NA measurement compared to unassisted measurements was reduced by 45% to 80%. The NA-AI model proved more accurate than the original model except when the hip dysplasia was severe, and its assistance decreased the time needed to analyze radiographs. The assistance of the NA-AI model reduces the time taken for radiographic hip analysis for clinical applications. However, it is less reliable in cases involving severe osteoarthritic change, requiring manual review for such cases.

Beyond the First Read: AI-Assisted Perceptual Error Detection in Chest Radiography Accounting for Interobserver Variability

Adhrith Vutukuri, Akash Awasthi, David Yang, Carol C. Wu, Hien Van Nguyen

arxiv logopreprintJun 16 2025
Chest radiography is widely used in diagnostic imaging. However, perceptual errors -- especially overlooked but visible abnormalities -- remain common and clinically significant. Current workflows and AI systems provide limited support for detecting such errors after interpretation and often lack meaningful human--AI collaboration. We introduce RADAR (Radiologist--AI Diagnostic Assistance and Review), a post-interpretation companion system. RADAR ingests finalized radiologist annotations and CXR images, then performs regional-level analysis to detect and refer potentially missed abnormal regions. The system supports a "second-look" workflow and offers suggested regions of interest (ROIs) rather than fixed labels to accommodate inter-observer variation. We evaluated RADAR on a simulated perceptual-error dataset derived from de-identified CXR cases, using F1 score and Intersection over Union (IoU) as primary metrics. RADAR achieved a recall of 0.78, precision of 0.44, and an F1 score of 0.56 in detecting missed abnormalities in the simulated perceptual-error dataset. Although precision is moderate, this reduces over-reliance on AI by encouraging radiologist oversight in human--AI collaboration. The median IoU was 0.78, with more than 90% of referrals exceeding 0.5 IoU, indicating accurate regional localization. RADAR effectively complements radiologist judgment, providing valuable post-read support for perceptual-error detection in CXR interpretation. Its flexible ROI suggestions and non-intrusive integration position it as a promising tool in real-world radiology workflows. To facilitate reproducibility and further evaluation, we release a fully open-source web implementation alongside a simulated error dataset. All code, data, demonstration videos, and the application are publicly available at https://github.com/avutukuri01/RADAR.

ViT-NeBLa: A Hybrid Vision Transformer and Neural Beer-Lambert Framework for Single-View 3D Reconstruction of Oral Anatomy from Panoramic Radiographs

Bikram Keshari Parida, Anusree P. Sunilkumar, Abhijit Sen, Wonsang You

arxiv logopreprintJun 16 2025
Dental diagnosis relies on two primary imaging modalities: panoramic radiographs (PX) providing 2D oral cavity representations, and Cone-Beam Computed Tomography (CBCT) offering detailed 3D anatomical information. While PX images are cost-effective and accessible, their lack of depth information limits diagnostic accuracy. CBCT addresses this but presents drawbacks including higher costs, increased radiation exposure, and limited accessibility. Existing reconstruction models further complicate the process by requiring CBCT flattening or prior dental arch information, often unavailable clinically. We introduce ViT-NeBLa, a vision transformer-based Neural Beer-Lambert model enabling accurate 3D reconstruction directly from single PX. Our key innovations include: (1) enhancing the NeBLa framework with Vision Transformers for improved reconstruction capabilities without requiring CBCT flattening or prior dental arch information, (2) implementing a novel horseshoe-shaped point sampling strategy with non-intersecting rays that eliminates intermediate density aggregation required by existing models due to intersecting rays, reducing sampling point computations by $52 \%$, (3) replacing CNN-based U-Net with a hybrid ViT-CNN architecture for superior global and local feature extraction, and (4) implementing learnable hash positional encoding for better higher-dimensional representation of 3D sample points compared to existing Fourier-based dense positional encoding. Experiments demonstrate that ViT-NeBLa significantly outperforms prior state-of-the-art methods both quantitatively and qualitatively, offering a cost-effective, radiation-efficient alternative for enhanced dental diagnostics.

Automated Measurements of Spinal Parameters for Scoliosis Using Deep Learning.

Meng X, Zhu S, Yang Q, Zhu F, Wang Z, Liu X, Dong P, Wang S, Fan L

pubmed logopapersJun 15 2025
Retrospective single-institution study. To develop and validate an automated convolutional neural network (CNN) to measure the Cobb angle, T1 tilt angle, coronal balance, clavicular angle, height of the shoulders, T5-T12 Cobb angle, and sagittal balance for accurate scoliosis diagnosis. Scoliosis, characterized by a Cobb angle >10°, requires accurate and reliable measurements to guide treatment. Traditional manual measurements are time-consuming and have low interobserver and intraobserver reliability. While some automated tools exist, they often require manual intervention and focus primarily on the Cobb angle. In this study, we utilized four data sets comprising the anterior-posterior (AP) and lateral radiographs of 1682 patients with scoliosis. The CNN includes coarse segmentation, landmark localization, and fine segmentation. The measurements were evaluated using the dice coefficient, mean absolute error (MAE), and percentage of correct key-points (PCK) with a 3-mm threshold. An internal testing set, including 87 adolescent (7-16 yr) and 26 older adult patients (≥60 yr), was used to evaluate the agreement between automated and manual measurements. The automated measures by the CNN achieved high mean dice coefficients (>0.90), PCK of 89.7%-93.7%, and MAE for vertebral corners of 2.87-3.62 mm on AP radiographs. Agreement on the internal testing set for manual measurements was acceptable, with an MAE of 0.26 mm or degree-0.51 mm or degree for the adolescent subgroup and 0.29 mm or degree-4.93 mm or degree for the older adult subgroup on AP radiographs. The MAE for the T5-T12 Cobb angle and sagittal balance, on lateral radiographs, was 1.03° and 0.84 mm, respectively, in adolescents, and 4.60° and 9.41 mm, respectively, in older adults. Automated measurement time was significantly shorter compared with manual measurements. The deep learning automated system provides rapid, accurate, and reliable measurements for scoliosis diagnosis, which could improve clinical workflow efficiency and guide scoliosis treatment. Level III.

Boundary-Aware Vision Transformer for Angiography Vascular Network Segmentation

Nabil Hezil, Suraj Singh, Vita Vlasova, Oleg Rogov, Ahmed Bouridane, Rifat Hamoudi

arxiv logopreprintJun 15 2025
Accurate segmentation of vascular structures in coronary angiography remains a core challenge in medical image analysis due to the complexity of elongated, thin, and low-contrast vessels. Classical convolutional neural networks (CNNs) often fail to preserve topological continuity, while recent Vision Transformer (ViT)-based models, although strong in global context modeling, lack precise boundary awareness. In this work, we introduce BAVT, a Boundary-Aware Vision Transformer, a ViT-based architecture enhanced with an edge-aware loss that explicitly guides the segmentation toward fine-grained vascular boundaries. Unlike hybrid transformer-CNN models, BAVT retains a minimal, scalable structure that is fully compatible with large-scale vision foundation model (VFM) pretraining. We validate our approach on the DCA-1 coronary angiography dataset, where BAVT achieves superior performance across medical image segmentation metrics outperforming both CNN and hybrid baselines. These results demonstrate the effectiveness of combining plain ViT encoders with boundary-aware supervision for clinical-grade vascular segmentation.

Inference of single cell profiles from histology stains with the Single-Cell omics from Histology Analysis Framework (SCHAF)

Comiter, C., Chen, X., Vaishnav, E. D., Kobayashi-Kirschvink, K. J., Ciapmricotti, M., Zhang, K., Murray, J., Monticolo, F., Qi, J., Tanaka, R., Brodowska, S. E., Li, B., Yang, Y., Rodig, S. J., Karatza, A., Quintanal Villalonga, A., Turner, M., Pfaff, K. L., Jane-Valbuena, J., Slyper, M., Waldman, J., Vigneau, S., Wu, J., Blosser, T. R., Segerstolpe, A., Abravanel, D., Wagle, N., Demehri, S., Zhuang, X., Rudin, C. M., Klughammer, J., Rozenblatt-Rosen, O., Stultz, C. M., Shu, J., Regev, A.

biorxiv logopreprintJun 13 2025
Tissue biology involves an intricate balance between cell-intrinsic processes and interactions between cells organized in specific spatial patterns, which can be respectively captured by single cell profiling methods, such as single cell RNA-seq (scRNA-seq) and spatial transcriptomics, and histology imaging data, such as Hematoxylin-and-Eosin (H&E) stains. While single cell profiles provide rich molecular information, they can be challenging to collect routinely in the clinic and either lack spatial resolution or high gene throughput. Conversely, histological H&E assays have been a cornerstone of tissue pathology for decades, but do not directly report on molecular details, although the observed structure they capture arises from molecules and cells. Here, we leverage vision transformers and adversarial deep learning to develop the Single Cell omics from Histology Analysis Framework (SCHAF), which generates a tissue sample's spatially-resolved whole transcriptome single cell omics dataset from its H&E histology image. We demonstrate SCHAF on a variety of tissues--including lung cancer, metastatic breast cancer, placentae, and whole mouse pups--training with matched samples analyzed by sc/snRNA-seq, H&E staining, and, when available, spatial transcriptomics. SCHAF generated appropriate single cell profiles from histology images in test data, related them spatially, and compared well to ground-truth scRNA-Seq, expert pathologist annotations, or direct spatial transcriptomic measurements, with some limitations. SCHAF opens the way to next-generation H&E analyses and an integrated understanding of cell and tissue biology in health and disease.

Anatomy-Grounded Weakly Supervised Prompt Tuning for Chest X-ray Latent Diffusion Models

Konstantinos Vilouras, Ilias Stogiannidis, Junyu Yan, Alison Q. O'Neil, Sotirios A. Tsaftaris

arxiv logopreprintJun 12 2025
Latent Diffusion Models have shown remarkable results in text-guided image synthesis in recent years. In the domain of natural (RGB) images, recent works have shown that such models can be adapted to various vision-language downstream tasks with little to no supervision involved. On the contrary, text-to-image Latent Diffusion Models remain relatively underexplored in the field of medical imaging, primarily due to limited data availability (e.g., due to privacy concerns). In this work, focusing on the chest X-ray modality, we first demonstrate that a standard text-conditioned Latent Diffusion Model has not learned to align clinically relevant information in free-text radiology reports with the corresponding areas of the given scan. Then, to alleviate this issue, we propose a fine-tuning framework to improve multi-modal alignment in a pre-trained model such that it can be efficiently repurposed for downstream tasks such as phrase grounding. Our method sets a new state-of-the-art on a standard benchmark dataset (MS-CXR), while also exhibiting robust performance on out-of-distribution data (VinDr-CXR). Our code will be made publicly available.

Identification of Atypical Scoliosis Patterns Using X-ray Images Based on Fine-Grained Techniques in Deep Learning.

Chen Y, He Z, Yang KG, Qin X, Lau AY, Liu Z, Lu N, Cheng JC, Lee WY, Chui EC, Qiu Y, Liu X, Chen X, Zhu Z

pubmed logopapersJun 11 2025
Study DesignRetrospective diagnostic study.ObjectivesTo develop a fine-grained classification model based on deep learning using X-ray images, to screen for scoliosis, and further to screen for atypical scoliosis patterns associated with Chiari Malformation type I (CMS).MethodsA total of 508 pairs of coronal and sagittal X-ray images from patients with CMS, adolescent idiopathic scoliosis (AIS), and normal controls (NC) were processed through construction of the ResNet-50 model, including the development of ResNet-50 Coronal, ResNet-50 Sagittal, ResNet-50 Dual, ResNet-50 Concat, and ResNet-50 Bilinear models. Evaluation metrics calculated included accuracy, sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) for both the scoliosis diagnosis system and the CMS diagnosis system, along with the generation of receiver operating characteristic (ROC) curves and heatmaps for CMS diagnosis.ResultsThe classification results for the scoliosis diagnosis system showed that the ResNet-50 Coronal model had the best overall performance. For the CMS diagnosis system, the ResNet-50 Coronal and ResNet-50 Dual models demonstrated optimal performance. Specifically, the ResNet-50 Dual model reached the diagnostic level of senior spine surgeons, and the ResNet-50 Coronal model even surpassed senior surgeons in specificity and PPV. The CMS heatmaps revealed that major classification weights were concentrated on features such as atypical curve types, significant lateral shift of scoliotic segments, longer affected segments, and severe trunk tilt.ConclusionsThe fine-grained classification model based on the ResNet-50 network can accurately screen for atypical scoliosis patterns associated with CMS, highlighting the importance of radiographic features such as atypical curve types in model classification.

Autonomous Computer Vision Development with Agentic AI

Jin Kim, Muhammad Wahi-Anwa, Sangyun Park, Shawn Shin, John M. Hoffman, Matthew S. Brown

arxiv logopreprintJun 11 2025
Agentic Artificial Intelligence (AI) systems leveraging Large Language Models (LLMs) exhibit significant potential for complex reasoning, planning, and tool utilization. We demonstrate that a specialized computer vision system can be built autonomously from a natural language prompt using Agentic AI methods. This involved extending SimpleMind (SM), an open-source Cognitive AI environment with configurable tools for medical image analysis, with an LLM-based agent, implemented using OpenManus, to automate the planning (tool configuration) for a particular computer vision task. We provide a proof-of-concept demonstration that an agentic system can interpret a computer vision task prompt, plan a corresponding SimpleMind workflow by decomposing the task and configuring appropriate tools. From the user input prompt, "provide sm (SimpleMind) config for lungs, heart, and ribs segmentation for cxr (chest x-ray)"), the agent LLM was able to generate the plan (tool configuration file in YAML format), and execute SM-Learn (training) and SM-Think (inference) scripts autonomously. The computer vision agent automatically configured, trained, and tested itself on 50 chest x-ray images, achieving mean dice scores of 0.96, 0.82, 0.83, for lungs, heart, and ribs, respectively. This work shows the potential for autonomous planning and tool configuration that has traditionally been performed by a data scientist in the development of computer vision applications.

Autonomous Computer Vision Development with Agentic AI

Jin Kim, Muhammad Wahi-Anwa, Sangyun Park, Shawn Shin, John M. Hoffman, Matthew S. Brown

arxiv logopreprintJun 11 2025
Agentic Artificial Intelligence (AI) systems leveraging Large Language Models (LLMs) exhibit significant potential for complex reasoning, planning, and tool utilization. We demonstrate that a specialized computer vision system can be built autonomously from a natural language prompt using Agentic AI methods. This involved extending SimpleMind (SM), an open-source Cognitive AI environment with configurable tools for medical image analysis, with an LLM-based agent, implemented using OpenManus, to automate the planning (tool configuration) for a particular computer vision task. We provide a proof-of-concept demonstration that an agentic system can interpret a computer vision task prompt, plan a corresponding SimpleMind workflow by decomposing the task and configuring appropriate tools. From the user input prompt, "provide sm (SimpleMind) config for lungs, heart, and ribs segmentation for cxr (chest x-ray)"), the agent LLM was able to generate the plan (tool configuration file in YAML format), and execute SM-Learn (training) and SM-Think (inference) scripts autonomously. The computer vision agent automatically configured, trained, and tested itself on 50 chest x-ray images, achieving mean dice scores of 0.96, 0.82, 0.83, for lungs, heart, and ribs, respectively. This work shows the potential for autonomous planning and tool configuration that has traditionally been performed by a data scientist in the development of computer vision applications.
Page 22 of 35341 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.