Sort by:
Page 217 of 3933923 results

Machine Learning-Based Diagnostic Prediction Model Using T1-Weighted Striatal Magnetic Resonance Imaging for Early-Stage Parkinson's Disease Detection.

Accioly ARM, Menezes VO, Calixto LH, Bispo DPCF, Lachmann M, Mourato FA, Machado MAD, Diniz PRB

pubmed logopapersJul 1 2025
Diagnosing Parkinson's disease (PD) typically relies on clinical evaluations, often detecting it in advanced stages. Recently, artificial intelligence has increasingly been applied to imaging for neurodegenerative disorders. This study aims to develop a diagnostic prediction model using T1-weighted magnetic resonance imaging (T1-MRI) data from the caudate and putamen in individuals with early-stage PD. This retrospective case-control study included 69 early-stage PD patients and 22 controls, recruited through the Parkinson's Progression Markers Initiative. T1-MRI scans were acquired using a 3-tesla system. 432 radiomic features were extracted from images of the segmented caudate and putâmen in an automated way. Feature selection was performed using Pearson's correlation and recursive feature elimination to identify the most relevant variables. Three machine learning algorithms-random forest (RF), support vector machine and logistic regression-were evaluated for diagnostic prediction effectiveness using a cross-validation method. The Shapley Additive Explanations technique identified the most significant features distinguishing between the groups. The metrics used to evaluate the performance were discrimination, expressed in area under the ROC curve (AUC), sensitivity and specificity; and calibration, expressed as accuracy. The RF algorithm showed superior performance with an average accuracy of 92.85%, precision of 100.00%, sensitivity of 86.66%, specificity of 96.65% and AUC of 0.93. The three most influential features were contrast, elongation, and gray-level non-uniformity, all from the putamen. Machine learning-based models can differentiate early-stage PD from controls using T1-weighted MRI radiomic features.

External Validation of an Artificial Intelligence Algorithm Using Biparametric MRI and Its Simulated Integration with Conventional PI-RADS for Prostate Cancer Detection.

Belue MJ, Mukhtar V, Ram R, Gokden N, Jose J, Massey JL, Biben E, Buddha S, Langford T, Shah S, Harmon SA, Turkbey B, Aydin AM

pubmed logopapersJul 1 2025
Prostate imaging reporting and data systems (PI-RADS) experiences considerable variability in inter-reader performance. Artificial Intelligence (AI) algorithms were suggested to provide comparable performance to PI-RADS for assessing prostate cancer (PCa) risk, albeit tested in highly selected cohorts. This study aimed to assess an AI algorithm for PCa detection in a clinical practice setting and simulate integration of the AI model with PI-RADS for assessment of indeterminate PI-RADS 3 lesions. This retrospective cohort study externally validated a biparametric MRI-based AI model for PCa detection in a consecutive cohort of patients who underwent prostate MRI and subsequently targeted and systematic prostate biopsy at a urology clinic between January 2022 and March 2024. Radiologist interpretations followed PI-RADS v2.1, and biopsies were conducted per PI-RADS scores. The previously developed AI model provided lesion segmentations and cancer probability maps which were compared to biopsy results. Additionally, we conducted a simulation to adjust biopsy thresholds for index PI-RADS category 3 studies, where AI predictions within these studies upgraded them to PI-RADS category 4. Among 144 patients with a median age of 70 years and PSA density of 0.17ng/mL/cc, AI's sensitivity for detection of PCa (86.6%) and clinically significant PCa (csPCa, 88.4%) was comparable to radiologists (85.7%, p=0.84, and 89.5%, p=0.80, respectively). The simulation combining radiologist and AI evaluations improved clinically significant PCa sensitivity by 5.8% (p=0.025). The combination of AI, PI-RADS and PSA density provided the best diagnostic performance for csPCa (area under the curve [AUC]=0.76). The AI algorithm demonstrated comparable PCa detection rates to PI-RADS. The combination of AI with radiologist interpretation improved sensitivity and could be instrumental in assessment of low-risk and indeterminate PI-RADS lesions. The role of AI in PCa screening remains to be further elucidated.

Effects of Renal Function on the Multimodal Brain Networks Affecting Mild Cognitive Impairment Converters in End-Stage Renal Disease.

Yu Z, Du Y, Pang H, Li X, Liu Y, Bu S, Wang J, Zhao M, Ren Z, Li X, Yao L

pubmed logopapersJul 1 2025
Cognitive decline is common in End-Stage Renal Disease (ESRD) patients, yet its neural mechanisms are poorly understood. This study investigates structural and functional brain network reconfiguration in ESRD patients transitioning to Mild Cognitive Impairment (MCI) and evaluates its potential for predicting MCI risk. We enrolled 90 ESRD patients with 2-year follow-up, categorized as MCI converters (MCI_C, n=48) and non-converters (MCI_NC, n=42). Brain networks were constructed using baseline rs-fMRI and high angular resolution diffusion imaging, focusing on regional structural-functional coupling (SFC). A Support Vector Machine (SVM) model was used to identify brain regions associated with cognitive decline. Mediation analysis was conducted to explore the relationship between kidney function, brain network reconfiguration, and cognition. MCI_C patients showed decreased network efficiency in the structural network and compensatory changes in the functional network. Machine learning models using multimodal network features predicted MCI with high accuracy (AUC=0.928 for training set, AUC=0.903 for test set). SHAP analysis indicated that reduced hippocampal SFC was the most significant predictor of MCI_C. Mediation analysis revealed that altered brain network topology, particularly hippocampal SFC, mediated the relationship between kidney dysfunction and cognitive decline. This study provides new insights into the link between kidney function and cognition, offering potential clinical applications for structural and functional MRI biomarkers.

Prediction Crohn's Disease Activity Using Computed Tomography Enterography-Based Radiomics and Serum Markers.

Wang P, Liu Y, Wang Y

pubmed logopapersJun 30 2025
Accurate stratification of the activity index of Crohn's disease (CD) using computed tomography enterography (CTE) radiomics and serum markers can aid in predicting disease progression and assist physicians in personalizing therapeutic regimens for patients with CD. This retrospective study enrolled 233 patients diagnosed with CD between January 2019 and August 2024. Patients were divided into training and testing cohorts at a ratio of 7:3 and further categorized into remission, mild active phase, and moderate-severe active phase groups based on simple endoscopic score for CD (SEC-CD). Radiomics features were extracted from CTE venous images, and T-test and least absolute shrinkage and selection operator (LASSO) regression were applied for feature selection. The serum markers were selected based on the variance analysis. We also developed a random forest (RF) model for multi-class stratification of CD. The model performance was evaluated by the area under the receiver operating characteristic curve (AUC) and quantified the contribution of each feature in the dataset to CD activity via Shapley additive exPlanations (SHAP) values. Finally, we enrolled gender, radiomics scores, and serum scores to develop a nomogram model to verify the effectiveness of feature extraction. 14 non-zero coefficient radiomics features and six serum markers with significant differences (P<0.01) were ultimately selected to predict CD activity. The AUC (micro/macro) for the ensemble machine learning model combining the radiomics features and serum markers is 0.931/0.928 for three-class. The AUC for the remission phase, the mild active phase, and the moderate-severe active phase were 0.983, 0.852, and 0.917, respectively. The mean AUC for the nomogram model was 0.940. A radiomics model was developed by integrating radiomics and serum markers of CD patients, achieving enhanced consistency with SEC-CD in grade CD. This model has the potential to assist clinicians in accurate diagnosis and treatment.

U-Net-based architecture with attention mechanisms and Bayesian Optimization for brain tumor segmentation using MR images.

Ramalakshmi K, Krishna Kumari L

pubmed logopapersJun 30 2025
As technological innovation in computers has advanced, radiologists may now diagnose brain tumors (BT) with the use of artificial intelligence (AI). In the medical field, early disease identification enables further therapies, where the use of AI systems is essential for time and money savings. The difficulties presented by various forms of Magnetic Resonance (MR) imaging for BT detection are frequently not addressed by conventional techniques. To get around frequent problems with traditional tumor detection approaches, deep learning techniques have been expanded. Thus, for BT segmentation utilizing MR images, a U-Net-based architecture combined with Attention Mechanisms has been developed in this work. Moreover, by fine-tuning essential variables, Hyperparameter Optimization (HPO) is used using the Bayesian Optimization Algorithm to strengthen the segmentation model's performance. Tumor regions are pinpointed for segmentation using Region-Adaptive Thresholding technique, and the segmentation results are validated against ground truth annotated images to assess the performance of the suggested model. Experiments are conducted using the LGG, Healthcare, and BraTS 2021 MRI brain tumor datasets. Lastly, the importance of the suggested model has been demonstrated through comparing several metrics, such as IoU, accuracy, and DICE Score, with current state-of-the-art methods. The U-Net-based method gained a higher DICE score of 0.89687 in the segmentation of MRI-BT.

A Deep Learning-Based De-Artifact Diffusion Model for Removing Motion Artifacts in Knee MRI.

Li Y, Gong T, Zhou Q, Wang H, Yan X, Xi Y, Shi Z, Deng W, Shi F, Wang Y

pubmed logopapersJun 30 2025
Motion artifacts are common for knee MRI, which usually lead to rescanning. Effective removal of motion artifacts would be clinically useful. To construct an effective deep learning-based model to remove motion artifacts for knee MRI using real-world data. Retrospective. Model construction: 90 consecutive patients (1997 2D slices) who had knee MRI images with motion artifacts paired with immediately rescanned images without artifacts served as ground truth. Internal test dataset: 25 patients (795 slices) from another period; external test dataset: 39 patients (813 slices) from another hospital. 3-T/1.5-T knee MRI with T1-weighted imaging, T2-weighted imaging, and proton-weighted imaging. A deep learning-based supervised conditional diffusion model was constructed. Objective metrics (root mean square error [RMSE], peak signal-to-noise ratio [PSNR], structural similarity [SSIM]) and subjective ratings were used for image quality assessment, which were compared with three other algorithms (enhanced super-resolution [ESR], enhanced deep super-resolution, and ESR using a generative adversarial network). Diagnostic performance of the output images was compared with the rescanned images. The Kappa Test, Pearson chi-square test, Fredman's rank-sum test, and the marginal homogeneity test. A p value < 0.05 was considered statistically significant. Subjective ratings showed significant improvements in the output images compared to the input, with no significant difference from the ground truth. The constructed method demonstrated the smallest RMSE (11.44  <math xmlns="http://www.w3.org/1998/Math/MathML"> <semantics><mrow><mo>±</mo></mrow> <annotation>$$ \pm $$</annotation></semantics> </math>  5.47 in the validation cohort; 13.95  <math xmlns="http://www.w3.org/1998/Math/MathML"> <semantics><mrow><mo>±</mo></mrow> <annotation>$$ \pm $$</annotation></semantics> </math>  4.32 in the external test cohort), the largest PSNR (27.61  <math xmlns="http://www.w3.org/1998/Math/MathML"> <semantics><mrow><mo>±</mo></mrow> <annotation>$$ \pm $$</annotation></semantics> </math>  3.20 in the validation cohort; 25.64  <math xmlns="http://www.w3.org/1998/Math/MathML"> <semantics><mrow><mo>±</mo></mrow> <annotation>$$ \pm $$</annotation></semantics> </math>  2.67 in the external test cohort) and SSIM (0.97  <math xmlns="http://www.w3.org/1998/Math/MathML"> <semantics><mrow><mo>±</mo></mrow> <annotation>$$ \pm $$</annotation></semantics> </math>  0.04 in the validation cohort; 0.94  <math xmlns="http://www.w3.org/1998/Math/MathML"> <semantics><mrow><mo>±</mo></mrow> <annotation>$$ \pm $$</annotation></semantics> </math>  0.04 in the external test cohort) compared to the other three algorithms. The output images achieved comparable diagnostic capability as the ground truth for multiple anatomical structures. The constructed model exhibited feasibility and effectiveness, and outperformed multiple other algorithms for removing motion artifacts in knee MRI. Level 3. Stage 2.

Assessment of quantitative staging PET/computed tomography parameters using machine learning for early detection of progression in diffuse large B-cell lymphoma.

Aksu A, Us A, Küçüker KA, Solmaz Ş, Turgut B

pubmed logopapersJun 30 2025
This study aimed to investigate the role of volumetric and dissemination parameters obtained from pretreatment 18-fluorodeoxyglucose PET/computed tomography (18F-FDG PET/CT) in predicting progression/relapse in patients with diffuse large B-cell lymphoma (DLBCL) with machine learning algorithms. Patients diagnosed with DLBCL histopathologically, treated with rituximab, cyclophosphamide, doxorubicin, vincristine, and prednisone, and followed for at least 1 year were reviewed retrospectively. Quantitative parameters such as tumor volume [total metabolic tumor volume (tMTV)], tumor burden [total lesion glycolysis (tTLG)], and the longest distance between two tumor foci (Dmax) were obtained from PET images with a standard uptake value threshold of 4.0. The MTV obtained from the volume of interest with the highest volume was noted as metabolic bulk volume (MBV). By analyzing the patients' PET parameters and clinical information with machine learning algorithms, models that attempt to predict progression/recurrence over 1 year were obtained. Of the 90 patients included, 16 had progression within 1 year. Significant differences were found in tMTV, tTLG, MBV, and Dmax values between patients with and without progression. The area under curve (AUC) of the model obtained with clinical data was 0.701. While a model with an AUC of 0.871 was obtained with a random forest algorithm using PET parameters, the model obtained with the Naive Bayes algorithm including clinical data in PET parameters had an AUC of 0.838. Using quantitative parameters derived from staging PET with machine learning algorithms may enable us to detect early progression in patients with DLBCL and improve early risk stratification and guide treatment decisions in these patients.

Ultrasound Radio Frequency Time Series for Tissue Typing: Experiments on In-Vivo Breast Samples Using Texture-Optimized Features and Multi-Origin Method of Classification (MOMC).

Arab M, Fallah A, Rashidi S, Dastjerdi MM, Ahmadinejad N

pubmed logopapersJun 30 2025
One of the most promising auxiliaries for screening breast cancer (BC) is ultrasound (US) radio-frequency (RF) time series. It has the superiority of not requiring any supplementary equipment over other methods. This article sought to propound a machine learning (ML) method for the automated categorization of breast lesions-categorized as benign, probably benign, suspicious, or malignant-using features extracted from the accumulated US RF time series. In this research, 220 data points of the categories as mentioned earlier, recorded from 118 patients, were analyzed. The RFTSBU dataset was registered by a SuperSonic Imagine Aixplorer® medical/research system fitted with a linear transducer. The expert radiologist manually selected regions of interest (ROIs) in B-mode images before extracting 283 features from each ROI in the ML approach, utilizing textural features such as Gabor filter (GF), gray-level co-occurrence matrix (GLCM), gray-level run-length matrix (GLRLM), gray-level size zone matrix (GLSZM), and gray-level dependence matrix (GLDM). Subsequently, the particle swarm optimization (PSO) narrowed the features to 131 highly effective ones. Ultimately, the features underwent classification using an innovative multi-origin method classification (MOMC), marking a significant leap in BC diagnosis. Employing 5-fold cross-validation, the study achieved notable accuracy rates of 98.57 ± 1.09%, 91.53 ± 0.89%, and 83.71 ± 1.30% for 2-, 3-, and 4-class classifications, respectively, using MOMC-SVM and MOMC-ensemble classifiers. This research introduces an innovative ML-based approach to differentiate between diverse breast lesion types using in vivo US RF time series data. The findings underscore its efficacy in enhancing classification accuracy, promising significant strides in computer-aided diagnosis (CAD) for BC screening.

Machine learning methods for sex estimation of sub-adults using cranial computed tomography images.

Syed Mohd Hamdan SN, Faizal Abdullah ERM, Wen KJ, Al-Adawiyah Rahmat R, Wan Ibrahim WI, Abd Kadir KA, Ibrahim N

pubmed logopapersJun 30 2025
This research aimed to compare the classification accuracy of three machine learning (ML) methods (random forest (RF), support vector machines (SVM), linear discriminant analysis (LDA)) for sex estimation of sub-adults using cranial computed tomography (CCT) images. A total of 521 CCT scans from sub-adult Malaysians aged 0 to 20 were analysed using Mimics software (Materialise Mimics Ver. 21). Plane-to-plane (PTP) protocol was used for measuring 14 chosen craniometric parameters. A trio of machine learning algorithms RF, SVM, and LDA with GridSearchCV was used to produce classification models for sex estimation. In addition, performance was measured in the form of accuracy, precision, recall, and F1-score, among others. RF produced testing accuracy of 73%, with the best hyperparameters of max_depth = 6, max_samples = 40, and n_estimators = 45. SVM obtained an accuracy of 67% with the best hyperparameters: learning rate (C) = 10, gamma = 0.01, and kernel = radial basis function (RBF). LDA obtained the lowest accuracy of 65% with shrinkage of 0.02. Among the tested ML methods, RF showed the highest testing accuracy in comparison to SVM and LDA. This is the first AI-based classification model that can be used for estimating sex in sub-adults using CCT scans.

BIScreener: enhancing breast cancer ultrasound diagnosis through integrated deep learning with interpretability.

Chen Y, Wang P, Ouyang J, Tan M, Nie L, Zhang Y, Wang T

pubmed logopapersJun 30 2025
Breast cancer is the leading cause of death among women worldwide, and early detection through the standardized BI-RADS framework helps physicians assess the risk of malignancy and guide appropriate diagnostic and treatment decisions. In this study, an interpretable deep learning model (BIScreener) was proposed for predicting BI-RADS classifications from breast ultrasound images, aiding in the accurate assessment of breast cancer risk and improving diagnostic efficiency. BIScreener utilizes the stacked generalization of three pretrained convolutional neural networks to analyze ultrasound images obtained from two specific instruments (Mindray R5 and HITACHI) used at local hospitals. BIScreener achieved a classification total accuracy of 90.0% and ROC-AUC value of 0.982 in the external test set for five BI-RADS categories. The proposed method achieved 83.8% classification total accuracy and 0.967 ROC-AUC value for seven BI-RADS categories. In addition, the model improved the diagnostic accuracy of two radiologists by more than 8.1% for five BI-RADS categories and by more than 4.8% for seven BI-RADS categories and reduced the explanation time by more than 19.0%, demonstrating its potential to accelerate and improve the breast cancer diagnosis process.
Page 217 of 3933923 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.