Sort by:
Page 210 of 3993982 results

Enhancing Lung Cancer Diagnosis: An Optimization-Driven Deep Learning Approach with CT Imaging.

Lakshminarasimha K, Priyeshkumar AT, Karthikeyan M, Sakthivel R

pubmed logopapersJun 23 2025
Lung cancer (LC) remains a leading cause of mortality worldwide, affecting individuals across all genders and age groups. Early and accurate diagnosis is critical for effective treatment and improved survival rates. Computed Tomography (CT) imaging is widely used for LC detection and classification. However, manual identification can be time-consuming and error-prone due to the visual similarities among various LC types. Deep learning (DL) has shown significant promise in medical image analysis. Although numerous studies have investigated LC detection using deep learning techniques, the effective extraction of highly correlated features remains a significant challenge, thereby limiting diagnostic accuracy. Furthermore, most existing models encounter substantial computational complexity and find it difficult to efficiently handle the high-dimensional nature of CT images. This study introduces an optimized CBAM-EfficientNet model to enhance feature extraction and improve LC classification. EfficientNet is utilized to reduce computational complexity, while the Convolutional Block Attention Module (CBAM) emphasizes essential spatial and channel features. Additionally, optimization algorithms including Gray Wolf Optimization (GWO), Whale Optimization (WO), and the Bat Algorithm (BA) are applied to fine-tune hyperparameters and boost predictive accuracy. The proposed model, integrated with different optimization strategies, is evaluated on two benchmark datasets. The GWO-based CBAM-EfficientNet achieves outstanding classification accuracies of 99.81% and 99.25% on the Lung-PET-CT-Dx and LIDC-IDRI datasets, respectively. Following GWO, the BA-based CBAM-EfficientNet achieves 99.44% and 98.75% accuracy on the same datasets. Comparative analysis highlights the superiority of the proposed model over existing approaches, demonstrating strong potential for reliable and automated LC diagnosis. Its lightweight architecture also supports real-time implementation, offering valuable assistance to radiologists in high-demand clinical environments.

MedSeg-R: Medical Image Segmentation with Clinical Reasoning

Hao Shao, Qibin Hou

arxiv logopreprintJun 23 2025
Medical image segmentation is challenging due to overlapping anatomies with ambiguous boundaries and a severe imbalance between the foreground and background classes, which particularly affects the delineation of small lesions. Existing methods, including encoder-decoder networks and prompt-driven variants of the Segment Anything Model (SAM), rely heavily on local cues or user prompts and lack integrated semantic priors, thus failing to generalize well to low-contrast or overlapping targets. To address these issues, we propose MedSeg-R, a lightweight, dual-stage framework inspired by inspired by clinical reasoning. Its cognitive stage interprets medical report into structured semantic priors (location, texture, shape), which are fused via transformer block. In the perceptual stage, these priors modulate the SAM backbone: spatial attention highlights likely lesion regions, dynamic convolution adapts feature filters to expected textures, and deformable sampling refines spatial support. By embedding this fine-grained guidance early, MedSeg-R disentangles inter-class confusion and amplifies minority-class cues, greatly improving sensitivity to small lesions. In challenging benchmarks, MedSeg-R produces large Dice improvements in overlapping and ambiguous structures, demonstrating plug-and-play compatibility with SAM-based systems.

Benchmarking Foundation Models and Parameter-Efficient Fine-Tuning for Prognosis Prediction in Medical Imaging

Filippo Ruffini, Elena Mulero Ayllon, Linlin Shen, Paolo Soda, Valerio Guarrasi

arxiv logopreprintJun 23 2025
Artificial Intelligence (AI) holds significant promise for improving prognosis prediction in medical imaging, yet its effective application remains challenging. In this work, we introduce a structured benchmark explicitly designed to evaluate and compare the transferability of Convolutional Neural Networks and Foundation Models in predicting clinical outcomes in COVID-19 patients, leveraging diverse publicly available Chest X-ray datasets. Our experimental methodology extensively explores a wide set of fine-tuning strategies, encompassing traditional approaches such as Full Fine-Tuning and Linear Probing, as well as advanced Parameter-Efficient Fine-Tuning methods including Low-Rank Adaptation, BitFit, VeRA, and IA3. The evaluations were conducted across multiple learning paradigms, including both extensive full-data scenarios and more clinically realistic Few-Shot Learning settings, which are critical for modeling rare disease outcomes and rapidly emerging health threats. By implementing a large-scale comparative analysis involving a diverse selection of pretrained models, including general-purpose architectures pretrained on large-scale datasets such as CLIP and DINOv2, to biomedical-specific models like MedCLIP, BioMedCLIP, and PubMedCLIP, we rigorously assess each model's capacity to effectively adapt and generalize to prognosis tasks, particularly under conditions of severe data scarcity and pronounced class imbalance. The benchmark was designed to capture critical conditions common in prognosis tasks, including variations in dataset size and class distribution, providing detailed insights into the strengths and limitations of each fine-tuning strategy. This extensive and structured evaluation aims to inform the practical deployment and adoption of robust, efficient, and generalizable AI-driven solutions in real-world clinical prognosis prediction workflows.

Adaptive Mask-guided K-space Diffusion for Accelerated MRI Reconstruction

Qinrong Cai, Yu Guan, Zhibo Chen, Dong Liang, Qiuyun Fan, Qiegen Liu

arxiv logopreprintJun 23 2025
As the deep learning revolution marches on, masked modeling has emerged as a distinctive approach that involves predicting parts of the original data that are proportionally masked during training, and has demonstrated exceptional performance in multiple fields. Magnetic Resonance Imaging (MRI) reconstruction is a critical task in medical imaging that seeks to recover high-quality images from under-sampled k-space data. However, previous MRI reconstruction strategies usually optimized the entire image domain or k-space, without considering the importance of different frequency regions in the k-space This work introduces a diffusion model based on adaptive masks (AMDM), which utilizes the adaptive adjustment of frequency distribution based on k-space data to develop a hybrid masks mechanism that adapts to different k-space inputs. This enables the effective separation of high-frequency and low-frequency components, producing diverse frequency-specific representations. Additionally, the k-space frequency distribution informs the generation of adaptive masks, which, in turn, guide a closed-loop diffusion process. Experimental results verified the ability of this method to learn specific frequency information and thereby improved the quality of MRI reconstruction, providing a flexible framework for optimizing k-space data using masks in the future.

SafeClick: Error-Tolerant Interactive Segmentation of Any Medical Volumes via Hierarchical Expert Consensus

Yifan Gao, Jiaxi Sheng, Wenbin Wu, Haoyue Li, Yaoxian Dong, Chaoyang Ge, Feng Yuan, Xin Gao

arxiv logopreprintJun 23 2025
Foundation models for volumetric medical image segmentation have emerged as powerful tools in clinical workflows, enabling radiologists to delineate regions of interest through intuitive clicks. While these models demonstrate promising capabilities in segmenting previously unseen anatomical structures, their performance is strongly influenced by prompt quality. In clinical settings, radiologists often provide suboptimal prompts, which affects segmentation reliability and accuracy. To address this limitation, we present SafeClick, an error-tolerant interactive segmentation approach for medical volumes based on hierarchical expert consensus. SafeClick operates as a plug-and-play module compatible with foundation models including SAM 2 and MedSAM 2. The framework consists of two key components: a collaborative expert layer (CEL) that generates diverse feature representations through specialized transformer modules, and a consensus reasoning layer (CRL) that performs cross-referencing and adaptive integration of these features. This architecture transforms the segmentation process from a prompt-dependent operation to a robust framework capable of producing accurate results despite imperfect user inputs. Extensive experiments across 15 public datasets demonstrate that our plug-and-play approach consistently improves the performance of base foundation models, with particularly significant gains when working with imperfect prompts. The source code is available at https://github.com/yifangao112/SafeClick.

Rethinking Decoder Design: Improving Biomarker Segmentation Using Depth-to-Space Restoration and Residual Linear Attention

Saad Wazir, Daeyoung Kim

arxiv logopreprintJun 23 2025
Segmenting biomarkers in medical images is crucial for various biotech applications. Despite advances, Transformer and CNN based methods often struggle with variations in staining and morphology, limiting feature extraction. In medical image segmentation, where datasets often have limited sample availability, recent state-of-the-art (SOTA) methods achieve higher accuracy by leveraging pre-trained encoders, whereas end-to-end methods tend to underperform. This is due to challenges in effectively transferring rich multiscale features from encoders to decoders, as well as limitations in decoder efficiency. To address these issues, we propose an architecture that captures multi-scale local and global contextual information and a novel decoder design, which effectively integrates features from the encoder, emphasizes important channels and regions, and reconstructs spatial dimensions to enhance segmentation accuracy. Our method, compatible with various encoders, outperforms SOTA methods, as demonstrated by experiments on four datasets and ablation studies. Specifically, our method achieves absolute performance gains of 2.76% on MoNuSeg, 3.12% on DSB, 2.87% on Electron Microscopy, and 4.03% on TNBC datasets compared to existing SOTA methods. Code: https://github.com/saadwazir/MCADS-Decoder

BrainSymphony: A Transformer-Driven Fusion of fMRI Time Series and Structural Connectivity

Moein Khajehnejad, Forough Habibollahi, Adeel Razi

arxiv logopreprintJun 23 2025
Existing foundation models for neuroimaging are often prohibitively large and data-intensive. We introduce BrainSymphony, a lightweight, parameter-efficient foundation model that achieves state-of-the-art performance while being pre-trained on significantly smaller public datasets. BrainSymphony's strong multimodal architecture processes functional MRI data through parallel spatial and temporal transformer streams, which are then efficiently distilled into a unified representation by a Perceiver module. Concurrently, it models structural connectivity from diffusion MRI using a novel signed graph transformer to encode the brain's anatomical structure. These powerful, modality-specific representations are then integrated via an adaptive fusion gate. Despite its compact design, our model consistently outperforms larger models on a diverse range of downstream benchmarks, including classification, prediction, and unsupervised network identification tasks. Furthermore, our model revealed novel insights into brain dynamics using attention maps on a unique external psilocybin neuroimaging dataset (pre- and post-administration). BrainSymphony establishes that architecturally-aware, multimodal models can surpass their larger counterparts, paving the way for more accessible and powerful research in computational neuroscience.

Open Set Recognition for Endoscopic Image Classification: A Deep Learning Approach on the Kvasir Dataset

Kasra Moazzami, Seoyoun Son, John Lin, Sun Min Lee, Daniel Son, Hayeon Lee, Jeongho Lee, Seongji Lee

arxiv logopreprintJun 23 2025
Endoscopic image classification plays a pivotal role in medical diagnostics by identifying anatomical landmarks and pathological findings. However, conventional closed-set classification frameworks are inherently limited in open-world clinical settings, where previously unseen conditions can arise andcompromise model reliability. To address this, we explore the application of Open Set Recognition (OSR) techniques on the Kvasir dataset, a publicly available and diverse endoscopic image collection. In this study, we evaluate and compare the OSR capabilities of several representative deep learning architectures, including ResNet-50, Swin Transformer, and a hybrid ResNet-Transformer model, under both closed-set and open-set conditions. OpenMax is adopted as a baseline OSR method to assess the ability of these models to distinguish known classes from previously unseen categories. This work represents one of the first efforts to apply open set recognition to the Kvasir dataset and provides a foundational benchmark for evaluating OSR performance in medical image analysis. Our results offer practical insights into model behavior in clinically realistic settings and highlight the importance of OSR techniques for the safe deployment of AI systems in endoscopy.

[Incidental pulmonary nodules on CT imaging: what to do?].

van der Heijden EHFM, Snoeren M, Jacobs C

pubmed logopapersJun 23 2025
Incidental pulmonary nodules are very frequently found on CT imaging and may represent (early stage) lung cancers without any signs or symptoms. These incidental findings can be solid lesions or ground glass lesions that may be solitary or multiple. Careful, and systematic evaluation of these findings in imaging is needed to determine the risk of malignancy, based on imaging characteristics, patient factors like smoking habits, prior cancers or family history, and growth rate preferably determined by volume measurements. Once the risk of malignancy is increased, minimal invasive image guided biopsy is warranted, preferably by navigation bronchoscopy. We present two cases to illustrate this clinical workup: one case with a benign solitary pulmonary nodule, and a second case with multiple ground glass opacities, diagnosed as synchronous primary adenocarcinomas of the lung. This is followed by a review of the current status of computer and artificial intelligence aided diagnostic support and clinical workflow optimization.

Fine-tuned large language model for classifying CT-guided interventional radiology reports.

Yasaka K, Nishimura N, Fukushima T, Kubo T, Kiryu S, Abe O

pubmed logopapersJun 23 2025
BackgroundManual data curation was necessary to extract radiology reports due to the ambiguities of natural language.PurposeTo develop a fine-tuned large language model that classifies computed tomography (CT)-guided interventional radiology reports into technique categories and to compare its performance with that of the readers.Material and MethodsThis retrospective study included patients who underwent CT-guided interventional radiology between August 2008 and November 2024. Patients were chronologically assigned to the training (n = 1142; 646 men; mean age = 64.1 ± 15.7 years), validation (n = 131; 83 men; mean age = 66.1 ± 16.1 years), and test (n = 332; 196 men; mean age = 66.1 ± 14.8 years) datasets. In establishing a reference standard, reports were manually classified into categories 1 (drainage), 2 (lesion biopsy within fat or soft tissue density tissues), 3 (lung biopsy), and 4 (bone biopsy). The bi-directional encoder representation from the transformers model was fine-tuned with the training dataset, and the model with the best performance in the validation dataset was selected. The performance and required time for classification in the test dataset were compared between the best-performing model and the two readers.ResultsCategories 1/2/3/4 included 309/367/270/196, 30/42/40/19, and 75/124/78/55 patients for the training, validation, and test datasets, respectively. The model demonstrated an accuracy of 0.979 in the test dataset, which was significantly better than that of the readers (0.922-0.940) (<i>P</i> ≤0.012). The model classified reports within a 49.8-53.5-fold shorter time compared to readers.ConclusionThe fine-tuned large language model classified CT-guided interventional radiology reports into four categories demonstrating high accuracy within a remarkably short time.
Page 210 of 3993982 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.