Sort by:
Page 21 of 23225 results

Machine Learning Approach to 3×4 Mueller Polarimetry for Complete Reconstruction of Diagnostic Polarimetric Images of Biological Tissues.

Chae S, Huang T, Rodriguez-Nunez O, Lucas T, Vanel JC, Vizet J, Pierangelo A, Piavchenko G, Genova T, Ajmal A, Ramella-Roman JC, Doronin A, Ma H, Novikova T

pubmed logopapersMay 6 2025
The translation of imaging Mueller polarimetry to clinical practice is often hindered by large footprint and relatively slow acquisition speed of the existing instruments. Using polarization-sensitive camera as a detector may reduce instrument dimensions and allow data streaming at video rate. However, only the first three rows of a complete 4×4 Mueller matrix can be measured. To overcome this hurdle we developed a machine learning approach using sequential neural network algorithm for the reconstruction of missing elements of a Mueller matrix from the measured elements of the first three rows. The algorithm was trained and tested on the dataset of polarimetric images of various excised human tissues (uterine cervix, colon, skin, brain) acquired with two different imaging Mueller polarimeters operating in either reflection (wide-field imaging system) or transmission (microscope) configurations at different wavelengths of 550 nm and 385 nm, respectively. Reconstruction performance was evaluated using various error metrics, all of which confirmed low error values. The reconstruction of full images of the fourth row of Mueller matrix with GPU parallelization and increasing batch size took less than 50 milliseconds. It suggests that a machine learning approach with parallel processing of all image pixels combined with the partial Mueller polarimeter operating at video rate can effectively substitute for the complete Mueller polarimeter and produce accurate maps of depolarization, linear retardance and orientation of the optical axis of biological tissues, which can be used for medical diagnosis in clinical settings.

Transfer learning‑based attenuation correction in <sup>99m</sup>Tc-TRODAT-1 SPECT for Parkinson's disease using realistic simulation and clinical data.

Huang W, Jiang H, Du Y, Wang H, Sun H, Hung GU, Mok GSP

pubmed logopapersMay 6 2025
Dopamine transporter (DAT) SPECT is an effective tool for early Parkinson's disease (PD) detection and heavily hampered by attenuation. Attenuation correction (AC) is the most important correction among other corrections. Transfer learning (TL) with fine-tuning (FT) a pre-trained model has shown potential in enhancing deep learning (DL)-based AC methods. In this study, we investigate leveraging realistic Monte Carlo (MC) simulation data to create a pre-trained model for TL-based AC (TLAC) to improve AC performance for DAT SPECT. A total number of 200 digital brain phantoms with realistic <sup>99m</sup>Tc-TRODAT-1 distribution was used to generate realistic noisy SPECT projections using MC SIMIND program and an analytical projector. One hundred real clinical <sup>99m</sup>Tc-TRODAT-1 brain SPECT data were also retrospectively analyzed. All projections were reconstructed with and without CT-based attenuation correction (CTAC/NAC). A 3D conditional generative adversarial network (cGAN) was pre-trained using 200 pairs of simulated NAC and CTAC SPECT data. Subsequently, 8, 24, and 80 pairs of clinical NAC and CTAC DAT SPECT data were employed to fine-tune the pre-trained U-Net generator of cGAN (TLAC-MC). Comparisons were made against without FT (DLAC-MC), training on purely limited clinical data (DLAC-CLI), clinical data with data augmentation (DLAC-AUG), mixed MC and clinical data (DLAC-MIX), TL using analytical simulation data (TLAC-ANA), and Chang's AC (ChangAC). All datasets used for DL-based methods were split to 7/8 for training and 1/8 for validation, and a 1-/2-/5-fold cross-validation were applied to test all 100 clinical datasets, depending on the numbers of clinical data used in the training model. With 8 available clinical datasets, TLAC-MC achieved the best result in Normalized Mean Squared Error (NMSE) and Structural Similarity Index Measure (SSIM) (TLAC-MC; NMSE = 0.0143 ± 0.0082/SSIM = 0.9355 ± 0.0203), followed by DLAC-AUG, DLAC-MIX, TLAC-ANA, DLAC-CLI, DLAC-MC, ChangAC and NAC. Similar trends exist when increasing the number of clinical datasets. For TL-based AC methods, the fewer clinical datasets available for FT, the greater the improvement as compared to DLAC-CLI using the same number of clinical datasets for training. Joint histograms analysis and Bland-Altman plots of SBR results also demonstrate consistent findings. TLAC is feasible for DAT SPECT with a pre-trained model generated purely based on simulation data. TLAC-MC demonstrates superior performance over other DL-based AC methods, particularly when limited clinical datasets are available. The closer the pre-training data is to the target domain, the better the performance of the TLAC model.

Molecular mechanisms explaining sex-specific functional connectivity changes in chronic insomnia disorder.

Yu L, Shen Z, Wei W, Dou Z, Luo Y, Hu D, Lin W, Zhao G, Hong X, Yu S

pubmed logopapersMay 6 2025
This study investigates the hypothesis that chronic insomnia disorder (CID) is characterized by sex-specific changes in resting-state functional connectivity (rsFC), with certain molecular mechanisms potentially influencing CID's pathophysiology by altering rsFC in relevant networks. Utilizing a resting-state functional magnetic resonance imaging (fMRI) dataset of 395 participants, including 199 CID patients and 196 healthy controls, we examined sex-specific rsFC effects, particularly in the default mode network (DMN) and five insomnia-genetically vulnerable regions of interest (ROIs). By integrating gene expression data from the Allen Human Brain Atlas, we identified genes linked to these sex-specific rsFC alterations and conducted enrichment analysis to uncover underlying molecular mechanisms. Additionally, we simulated the impact of sex differences in rsFC with different sex compositions in our dataset and employed machine learning classifiers to distinguish CID from healthy controls based on sex-specific rsFC data. We identified both shared and sex-specific rsFC changes in the DMN and the five genetically vulnerable ROIs, with gene expression variations associated with these sex-specific connectivity differences. Enrichment analysis highlighted genes involved in synaptic signaling, ion channels, and immune function as potential contributors to CID pathophysiology through their influence on connectivity. Furthermore, our findings demonstrate that different sex compositions significantly affect study outcomes and higher diagnostic performance in sex-specific rsFC data than combined sex. This study uncovered both shared and sex-specific connectivity alterations in CID, providing molecular insights into its pathophysiology and suggesting considering sex differences in future fMRI-based diagnostic and treatment strategies.

Brain connectome gradient dysfunction in patients with end-stage renal disease and its association with clinical phenotype and cognitive deficits.

Li P, Li N, Ren L, Yang YP, Zhu XY, Yuan HJ, Luo ZY, Mu JY, Wang W, Zhang M

pubmed logopapersMay 6 2025
A cortical hierarchical architecture is vital for encoding and integrating sensorimotor-to-cognitive information. However, whether this gradient structure is disrupted in end-stage renal disease (ESRD) patients and how this disruption provides valuable information for potential clinical symptoms remain unknown. We prospectively enrolled 77 ESRD patients and 48 healthy controls. Using resting-state functional magnetic resonance imaging, we studied ESRD-related hierarchical alterations. The Neurosynth platform and machine-learning models with 10-fold cross-validation were applied. ESRD patients had abnormal gradient metrics in core regions of the default mode network, sensorimotor network, and frontoparietal network. These changes correlated with creatinine, depression, and cognitive functions. A logistic regression classifier achieved a maximum performance of 84.8% accuracy and 0.901 area under the ROC curve (AUC). Our results highlight hierarchical imbalances in ESRD patients that correlate with diverse cognitive deficits, which may be used as potential neuroimaging markers for clinical symptoms.

A novel transfer learning framework for non-uniform conductivity estimation with limited data in personalized brain stimulation.

Kubota Y, Kodera S, Hirata A

pubmed logopapersMay 6 2025
<i>Objective</i>. Personalized transcranial magnetic stimulation (TMS) requires individualized head models that incorporate non-uniform conductivity to enable target-specific stimulation. Accurately estimating non-uniform conductivity in individualized head models remains a challenge due to the difficulty of obtaining precise ground truth data. To address this issue, we have developed a novel transfer learning-based approach for automatically estimating non-uniform conductivity in a human head model with limited data.<i>Approach</i>. The proposed method complements the limitations of the previous conductivity network (CondNet) and improves the conductivity estimation accuracy. This method generates a segmentation model from T1- and T2-weighted magnetic resonance images, which is then used for conductivity estimation via transfer learning. To enhance the model's representation capability, a Transformer was incorporated into the segmentation model, while the conductivity estimation model was designed using a combination of Attention Gates and Residual Connections, enabling efficient learning even with a small amount of data.<i>Main results</i>. The proposed method was evaluated using 1494 images, demonstrating a 2.4% improvement in segmentation accuracy and a 29.1% increase in conductivity estimation accuracy compared with CondNet. Furthermore, the proposed method achieved superior conductivity estimation accuracy even with only three training cases, outperforming CondNet, which was trained on an adequate number of cases. The conductivity maps generated by the proposed method yielded better results in brain electrical field simulations than CondNet.<i>Significance</i>. These findings demonstrate the high utility of the proposed method in brain electrical field simulations and suggest its potential applicability to other medical image analysis tasks and simulations.

Machine learning algorithms integrating positron emission tomography/computed tomography features to predict pathological complete response after neoadjuvant chemoimmunotherapy in lung cancer.

Sheng Z, Ji S, Chen Y, Mi Z, Yu H, Zhang L, Wan S, Song N, Shen Z, Zhang P

pubmed logopapersMay 6 2025
Reliable methods for predicting pathological complete response (pCR) in non-small cell lung cancer (NSCLC) patients undergoing neoadjuvant chemoimmunotherapy are still under exploration. Although Fluorine-18 fluorodeoxyglucose-positron emission tomography/computed tomography (18F-FDG PET/CT) features reflect tumour response, their utility in predicting pCR remains controversial. This retrospective analysis included NSCLC patients who received neoadjuvant chemoimmunotherapy followed by 18F-FDG PET/CT imaging at Shanghai Pulmonary Hospital from October 2019 to August 2024. Eligible patients were randomly divided into training and validation cohort at a 7:3 ratio. Relevant 18F-FDG PET/CT features were evaluated as individual predictors and incorporated into 5 machine learning (ML) models. Model performance was assessed using the area under the receiver operating characteristic curve (AUC), and Shapley additive explanation was applied for model interpretation. A total of 205 patients were included, with 91 (44.4%) achieving pCR. Post-treatment tumour maximum standardized uptake value (SUVmax) demonstrated the highest predictive performance among individual predictors, achieving an AUC of 0.72 (95% CI 0.65-0.79), while ΔT SUVmax achieved an AUC of 0.65 (95% CI 0.53-0.77). The Light Gradient Boosting Machine algorithm outperformed other models and individual predictors, achieving an average AUC of 0.87 (95% CI 0.78-0.97) in training cohort and 0.83 (95% CI 0.72-0.94) in validation cohort. Shapley additive explanation analysis identified post-treatment tumour SUVmax and post-treatment nodal volume as key contributors. This ML models offer a non-invasive and effective approach for predicting pCR after neoadjuvant chemoimmunotherapy in NSCLC.

Phenotype-Guided Generative Model for High-Fidelity Cardiac MRI Synthesis: Advancing Pretraining and Clinical Applications

Ziyu Li, Yujian Hu, Zhengyao Ding, Yiheng Mao, Haitao Li, Fan Yi, Hongkun Zhang, Zhengxing Huang

arxiv logopreprintMay 6 2025
Cardiac Magnetic Resonance (CMR) imaging is a vital non-invasive tool for diagnosing heart diseases and evaluating cardiac health. However, the limited availability of large-scale, high-quality CMR datasets poses a major challenge to the effective application of artificial intelligence (AI) in this domain. Even the amount of unlabeled data and the health status it covers are difficult to meet the needs of model pretraining, which hinders the performance of AI models on downstream tasks. In this study, we present Cardiac Phenotype-Guided CMR Generation (CPGG), a novel approach for generating diverse CMR data that covers a wide spectrum of cardiac health status. The CPGG framework consists of two stages: in the first stage, a generative model is trained using cardiac phenotypes derived from CMR data; in the second stage, a masked autoregressive diffusion model, conditioned on these phenotypes, generates high-fidelity CMR cine sequences that capture both structural and functional features of the heart in a fine-grained manner. We synthesized a massive amount of CMR to expand the pretraining data. Experimental results show that CPGG generates high-quality synthetic CMR data, significantly improving performance on various downstream tasks, including diagnosis and cardiac phenotypes prediction. These gains are demonstrated across both public and private datasets, highlighting the effectiveness of our approach. Code is availabel at https://anonymous.4open.science/r/CPGG.

Path and Bone-Contour Regularized Unpaired MRI-to-CT Translation

Teng Zhou, Jax Luo, Yuping Sun, Yiheng Tan, Shun Yao, Nazim Haouchine, Scott Raymond

arxiv logopreprintMay 6 2025
Accurate MRI-to-CT translation promises the integration of complementary imaging information without the need for additional imaging sessions. Given the practical challenges associated with acquiring paired MRI and CT scans, the development of robust methods capable of leveraging unpaired datasets is essential for advancing the MRI-to-CT translation. Current unpaired MRI-to-CT translation methods, which predominantly rely on cycle consistency and contrastive learning frameworks, frequently encounter challenges in accurately translating anatomical features that are highly discernible on CT but less distinguishable on MRI, such as bone structures. This limitation renders these approaches less suitable for applications in radiation therapy, where precise bone representation is essential for accurate treatment planning. To address this challenge, we propose a path- and bone-contour regularized approach for unpaired MRI-to-CT translation. In our method, MRI and CT images are projected to a shared latent space, where the MRI-to-CT mapping is modeled as a continuous flow governed by neural ordinary differential equations. The optimal mapping is obtained by minimizing the transition path length of the flow. To enhance the accuracy of translated bone structures, we introduce a trainable neural network to generate bone contours from MRI and implement mechanisms to directly and indirectly encourage the model to focus on bone contours and their adjacent regions. Evaluations conducted on three datasets demonstrate that our method outperforms existing unpaired MRI-to-CT translation approaches, achieving lower overall error rates. Moreover, in a downstream bone segmentation task, our approach exhibits superior performance in preserving the fidelity of bone structures. Our code is available at: https://github.com/kennysyp/PaBoT.

Rethinking Boundary Detection in Deep Learning-Based Medical Image Segmentation

Yi Lin, Dong Zhang, Xiao Fang, Yufan Chen, Kwang-Ting Cheng, Hao Chen

arxiv logopreprintMay 6 2025
Medical image segmentation is a pivotal task within the realms of medical image analysis and computer vision. While current methods have shown promise in accurately segmenting major regions of interest, the precise segmentation of boundary areas remains challenging. In this study, we propose a novel network architecture named CTO, which combines Convolutional Neural Networks (CNNs), Vision Transformer (ViT) models, and explicit edge detection operators to tackle this challenge. CTO surpasses existing methods in terms of segmentation accuracy and strikes a better balance between accuracy and efficiency, without the need for additional data inputs or label injections. Specifically, CTO adheres to the canonical encoder-decoder network paradigm, with a dual-stream encoder network comprising a mainstream CNN stream for capturing local features and an auxiliary StitchViT stream for integrating long-range dependencies. Furthermore, to enhance the model's ability to learn boundary areas, we introduce a boundary-guided decoder network that employs binary boundary masks generated by dedicated edge detection operators to provide explicit guidance during the decoding process. We validate the performance of CTO through extensive experiments conducted on seven challenging medical image segmentation datasets, namely ISIC 2016, PH2, ISIC 2018, CoNIC, LiTS17, and BTCV. Our experimental results unequivocally demonstrate that CTO achieves state-of-the-art accuracy on these datasets while maintaining competitive model complexity. The codes have been released at: https://github.com/xiaofang007/CTO.

Nonperiodic dynamic CT reconstruction using backward-warping INR with regularization of diffeomorphism (BIRD)

Muge Du, Zhuozhao Zheng, Wenying Wang, Guotao Quan, Wuliang Shi, Le Shen, Li Zhang, Liang Li, Yinong Liu, Yuxiang Xing

arxiv logopreprintMay 6 2025
Dynamic computed tomography (CT) reconstruction faces significant challenges in addressing motion artifacts, particularly for nonperiodic rapid movements such as cardiac imaging with fast heart rates. Traditional methods struggle with the extreme limited-angle problems inherent in nonperiodic cases. Deep learning methods have improved performance but face generalization challenges. Recent implicit neural representation (INR) techniques show promise through self-supervised deep learning, but have critical limitations: computational inefficiency due to forward-warping modeling, difficulty balancing DVF complexity with anatomical plausibility, and challenges in preserving fine details without additional patient-specific pre-scans. This paper presents a novel INR-based framework, BIRD, for nonperiodic dynamic CT reconstruction. It addresses these challenges through four key contributions: (1) backward-warping deformation that enables direct computation of each dynamic voxel with significantly reduced computational cost, (2) diffeomorphism-based DVF regularization that ensures anatomically plausible deformations while maintaining representational capacity, (3) motion-compensated analytical reconstruction that enhances fine details without requiring additional pre-scans, and (4) dimensional-reduction design for efficient 4D coordinate encoding. Through various simulations and practical studies, including digital and physical phantoms and retrospective patient data, we demonstrate the effectiveness of our approach for nonperiodic dynamic CT reconstruction with enhanced details and reduced motion artifacts. The proposed framework enables more accurate dynamic CT reconstruction with potential clinical applications, such as one-beat cardiac reconstruction, cinematic image sequences for functional imaging, and motion artifact reduction in conventional CT scans.
Page 21 of 23225 results
Show
per page
Get Started

Upload your X-ray image and get interpretation.

Upload now →

Disclaimer: X-ray Interpreter's AI-generated results are for informational purposes only and not a substitute for professional medical advice. Always consult a healthcare professional for medical diagnosis and treatment.