Sort by:
Page 205 of 2352341 results

Deep Learning for Breast Cancer Detection: Comparative Analysis of ConvNeXT and EfficientNet

Mahmudul Hasan

arxiv logopreprintMay 24 2025
Breast cancer is the most commonly occurring cancer worldwide. This cancer caused 670,000 deaths globally in 2022, as reported by the WHO. Yet since health officials began routine mammography screening in age groups deemed at risk in the 1980s, breast cancer mortality has decreased by 40% in high-income nations. Every day, a greater and greater number of people are receiving a breast cancer diagnosis. Reducing cancer-related deaths requires early detection and treatment. This paper compares two convolutional neural networks called ConvNeXT and EfficientNet to predict the likelihood of cancer in mammograms from screening exams. Preprocessing of the images, classification, and performance evaluation are main parts of the whole procedure. Several evaluation metrics were used to compare and evaluate the performance of the models. The result shows that ConvNeXT generates better results with a 94.33% AUC score, 93.36% accuracy, and 95.13% F-score compared to EfficientNet with a 92.34% AUC score, 91.47% accuracy, and 93.06% F-score on RSNA screening mammography breast cancer dataset.

MATI: A GPU-accelerated toolbox for microstructural diffusion MRI simulation and data fitting with a graphical user interface.

Xu J, Devan SP, Shi D, Pamulaparthi A, Yan N, Zu Z, Smith DS, Harkins KD, Gore JC, Jiang X

pubmed logopapersMay 24 2025
To introduce MATI (Microstructural Analysis Toolbox for Imaging), a versatile MATLAB-based toolbox that combines both simulation and data fitting capabilities for microstructural dMRI research. MATI provides a user-friendly, graphical user interface that enables researchers, including those without much programming experience, to perform advanced simulations and data analyses for microstructural MRI research. For simulation, MATI supports arbitrary microstructural tissues and pulse sequences. For data fitting, MATI supports a range of fitting methods, including traditional non-linear least squares, Bayesian approaches, machine learning, and dictionary matching methods, allowing users to tailor analyses based on specific research needs. Optimized with vectorized matrix operations and high-performance numerical libraries, MATI achieves high computational efficiency, enabling rapid simulations and data fitting on CPU and GPU hardware. While designed for microstructural dMRI, MATI's generalized framework can be extended to other imaging methods, making it a flexible and scalable tool for quantitative MRI research. MATI offers a significant step toward translating advanced microstructural MRI techniques into clinical applications.

Evaluation of locoregional invasiveness of early lung adenocarcinoma manifesting as ground-glass nodules via [<sup>68</sup>Ga]Ga-FAPI-46 PET/CT imaging.

Ruan D, Shi S, Guo W, Pang Y, Yu L, Cai J, Wu Z, Wu H, Sun L, Zhao L, Chen H

pubmed logopapersMay 24 2025
Accurate differentiation of the histologic invasiveness of early-stage lung adenocarcinoma is crucial for determining surgical strategies. This study aimed to investigate the potential of [<sup>68</sup>Ga]Ga-FAPI-46 PET/CT in assessing the invasiveness of early lung adenocarcinoma presenting as ground-glass nodules (GGNs) and identifying imaging features with strong predictive potential. This prospective study (NCT04588064) was conducted between July 2020 and July 2022, focusing on GGNs that were confirmed postoperatively to be either invasive adenocarcinoma (IAC), minimally invasive adenocarcinoma (MIA), or precursor glandular lesions (PGL). A total of 45 patients with 53 pulmonary GGNs were included in the study: 19 patients with GGNs associated with PGL-MIA and 34 with IAC. Lung nodules were segmented using the Segment Anything Model in Medical Images (MedSAM) and the PET Tumor Segmentation Extension. Clinical characteristics, along with conventional and high-throughput radiomics features from High-resolution CT (HRCT) and PET scans, were analysed. The predictive performance of these features in differentiating between PGL or MIA (PGL-MIA) and IAC was assessed using 5-fold cross-validation across six machine learning algorithms. Model validation was performed on an independent external test set (n = 11). The Chi-squared, Fisher's exact, and DeLong tests were employed to compare the performance of the models. The maximum standardised uptake value (SUVmax) derived from [<sup>68</sup>Ga]Ga-FAPI-46 PET was identified as an independent predictor of IAC. A cut-off value of 1.82 yielded a sensitivity of 94% (32/34), specificity of 84% (16/19), and an overall accuracy of 91% (48/53) in the training set, while achieving 100% (12/12) accuracy in the external test set. Radiomics-based classification further improved diagnostic performance, achieving a sensitivity of 97% (33/34), specificity of 89% (17/19), accuracy of 94% (50/53), and an area under the receiver operating characteristic curve (AUC) of 0.97 [95% CI: 0.93-1.00]. Compared with the CT-based radiomics model and the PET-based model, the combined PET/CT radiomics model did not show significant improvement in predictive performance. The key predictive feature was [<sup>68</sup>Ga]Ga-FAPI-46 PET log-sigma-7-mm-3D_firstorder_RootMeanSquared. The SUVmax derived from [<sup>68</sup>Ga]Ga-FAPI-46 PET/CT can effectively differentiate the invasiveness of early-stage lung adenocarcinoma manifesting as GGNs. Integrating high-throughput features from [<sup>68</sup>Ga]Ga-FAPI-46 PET/CT images can considerably enhance classification accuracy. NCT04588064; URL: https://clinicaltrials.gov/study/NCT04588064 .

Relational Bi-level aggregation graph convolutional network with dynamic graph learning and puzzle optimization for Alzheimer's classification.

Raajasree K, Jaichandran R

pubmed logopapersMay 24 2025
Alzheimer's disease (AD) is a neurodegenerative disorder characterized by a progressive cognitive decline, necessitating early diagnosis for effective treatment. This study presents the Relational Bi-level Aggregation Graph Convolutional Network with Dynamic Graph Learning and Puzzle Optimization for Alzheimer's Classification (RBAGCN-DGL-PO-AC), using denoised T1-weighted Magnetic Resonance Images (MRIs) collected from Alzheimer's Disease Neuroimaging Initiative (ADNI) repository. Addressing the impact of noise in medical imaging, the method employs advanced denoising techniques includes: the Modified Spline-Kernelled Chirplet Transform (MSKCT), Jump Gain Integral Recurrent Neural Network (JGIRNN), and Newton Time Extracting Wavelet Transform (NTEWT), to enhance the image quality. Key brain regions, crucial for classification such as hippocampal, lateral ventricle and posterior cingulate cortex are segmented using Attention Guided Generalized Intuitionistic Fuzzy C-Means Clustering (AG-GIFCMC). Feature extraction and classification using segmented outputs are performed with RBAGCN-DGL and puzzle optimization, categorize input images into Healthy Controls (HC), Early Mild Cognitive Impairment (EMCI), Late Mild Cognitive Impairment (LMCI), and Alzheimer's Disease (AD). To assess the effectiveness of the proposed method, we systematically examined the structural modifications to the RBAGCN-DGL-PO-AC model through extensive ablation studies. Experimental findings highlight that RBAGCN-DGL-PO-AC state-of-the art performance, with 99.25 % accuracy, outperforming existing methods including MSFFGCN_ADC, CNN_CAD_DBMRI, and FCNN_ADC, while reducing training time by 28.5 % and increasing inference speed by 32.7 %. Hence, the RBAGCN-DGL-PO-AC method enhances AD classification by integrating denoising, segmentation, and dynamic graph-based feature extraction, achieving superior accuracy and making it a valuable tool for clinical applications, ultimately improving patient outcomes and disease management.

Classifying athletes and non-athletes by differences in spontaneous brain activity: a machine learning and fMRI study.

Peng L, Xu L, Zhang Z, Wang Z, Zhong X, Wang L, Peng Z, Xu R, Shao Y

pubmed logopapersMay 24 2025
Different types of sports training can induce distinct changes in brain activity and function; however, it remains unclear if there are commonalities across various sports disciplines. Moreover, the relationship between these brain activity alterations and the duration of sports training requires further investigation. This study employed resting-state functional magnetic resonance imaging (rs-fMRI) techniques to analyze spontaneous brain activity using the amplitude of low-frequency fluctuations (ALFF) and fractional amplitude of low-frequency fluctuations (fALFF) in 86 highly trained athletes compared to 74 age- and gender-matched non-athletes. Our findings revealed significantly higher ALFF values in the Insula_R (Right Insula), OFCpost_R (Right Posterior orbital gyrus), and OFClat_R (Right Lateral orbital gyrus) in athletes compared to controls, whereas fALFF in the Postcentral_R (Right Postcentral) was notably higher in controls. Additionally, we identified a significant negative correlation between fALFF values in the Postcentral_R of athletes and their years of professional training. Utilizing machine learning algorithms, we achieved accurate classification of brain activity patterns distinguishing athletes from non-athletes with over 96.97% accuracy. These results suggest that the functional reorganization observed in athletes' brains may signify an adaptation to prolonged training, potentially reflecting enhanced processing efficiency. This study emphasizes the importance of examining the impact of long-term sports training on brain function, which could influence cognitive and sensory systems crucial for optimal athletic performance. Furthermore, machine learning methods could be used in the future to select athletes based on differences in brain activity.

Preoperative risk assessment of invasive endometrial cancer using MRI-based radiomics: a systematic review and meta-analysis.

Gao Y, Liang F, Tian X, Zhang G, Zhang H

pubmed logopapersMay 24 2025
Image-derived machine learning (ML) is a robust and growing field in diagnostic imaging systems for both clinicians and radiologists. Accurate preoperative radiological evaluation of the invasive ability of endometrial cancer (EC) can increase the degree of clinical benefit. The present study aimed to investigate the diagnostic performance of magnetic resonance imaging (MRI)-derived artificial intelligence for accurate preoperative assessment of the invasive risk. The PubMed, Embase, Cochrane Library and Web of Science databases were searched, and pertinent English-language papers were collected. The pooled sensitivity, specificity, diagnostic odds ratio (DOR), and positive and negative likelihood ratios (PLR and NLR, respectively) of all the papers were calculated using Stata software. The results were plotted on a summary receiver operating characteristic (SROC) curve, publication bias and threshold effects were evaluated, and meta-regression and subgroup analyses were conducted to explore the possible causes of intratumoral heterogeneity. MRI-based radiomics revealed pooled sensitivity (SEN) and specificity (SPE) values of 0.85 and 0.82 for the prediction of high-grade EC; 0.80 and 0.85 for deep myometrial invasion (DMI); 0.85 and 0.73 for lymphovascular space invasion (LVSI); 0.79 and 0.85 for microsatellite instability (MSI); and 0.90 and 0.72 for lymph node metastasis (LNM), respectively. For LVSI prediction and high-grade histological analysis, meta-regression revealed that the image segmentation and MRI-based radiomics modeling contributed to heterogeneity (p = 0.003 and 0.04). Through a systematic review and meta-analysis of the reported literature, preoperative MRI-derived ML could help clinicians accurately evaluate EC risk factors, potentially guiding individual treatment thereafter.

Using machine learning models based on cardiac magnetic resonance parameters to predict the prognostic in children with myocarditis.

Hu D, Cui M, Zhang X, Wu Y, Liu Y, Zhai D, Guo W, Ju S, Fan G, Cai W

pubmed logopapersMay 24 2025
To develop machine learning (ML) models incorporating explanatory cardiac magnetic resonance (CMR) parameters for predicting the prognosis of myocarditis in pediatric patients. 77 patients with pediatric myocarditis diagnosed clinically between January 2020 and December 2023 were enrolled retrospectively. All patients were examined by ultrasound, electrocardiogram (ECG), serum biomarkers on admission, and CMR scan to obtain 16 explanatory CMR parameters. All patients underwent follow-up echocardiography and CMR. Patients were divided into two groups according to the occurrence of adverse cardiac events (ACE) during follow-up: the poor prognosis group (n = 23) and the good prognosis group (n = 54). Four models were established, including logistic regression (LR), random forest (RF), support vector machine classifier (SVC), and extreme gradient boosting (XGBoost) model. The performance of each model was evaluated by the area under the receiver operating characteristic curve (AUC). Model interpretation was generated by Shapley additive interpretation (Shap). Among the four models, the three most important features were late gadolinium enhancement (LGE), left ventricular ejection fraction (LVEF), and SAXPeak Global Circumferential Strain (SAXGCS). In addition, LGE, LVEF, SAXGCS, and LAXPeak Global Longitudinal Strain (LAXGLS) were selected as the key predictors for all four models. Four interpretable CMR parameters were extracted, among which the LR model had the best prediction performance. The AUC, sensitivity, and specificity were 0.893, 0.820, and 0.944, respectively. The findings indicate that the presence of LGE on CMR imaging, along with reductions in LVEF, SAXGCS, and LAXGLS, are predictive of poor prognosis in patients with acute myocarditis. ML models, particularly the LR model, demonstrate the potential to predict the prognosis of children with myocarditis. These findings provide valuable insights for cardiologists, supporting more informed clinical decision-making and potentially enhancing patient outcomes in pediatric myocarditis cases.

Noninvasive prediction of failure of the conservative treatment in lateral epicondylitis by clinicoradiological features and elbow MRI radiomics based on interpretable machine learning: a multicenter cohort study.

Cui J, Wang P, Zhang X, Zhang P, Yin Y, Bai R

pubmed logopapersMay 24 2025
To develop and validate an interpretable machine learning model based on clinicoradiological features and radiomic features based on magnetic resonance imaging (MRI) to predict the failure of conservative treatment in lateral epicondylitis (LE). This retrospective study included 420 patients with LE from three hospitals, divided into a training cohort (n = 245), an internal validation cohort (n = 115), and an external validation cohort (n = 60). Patients were categorized into conservative treatment failure (n = 133) and conservative treatment success (n = 287) groups based on the outcome of conservative treatment. We developed two predictive models: one utilizing clinicoradiological features, and another integrating clinicoradiological and radiomic features. Seven machine learning algorithms were evaluated to determine the optimal model for predicting the failure of conservative treatment. Model performance was assessed using ROC, and model interpretability was examined using SHapley Additive exPlanations (SHAP). The LightGBM algorithm was selected as the optimal model because of its superior performance. The combined model demonstrated enhanced predictive accuracy with an area under the ROC curve (AUC) of 0.96 (95% CI: 0.91, 0.99) in the external validation cohort. SHAP analysis identified the radiological feature "CET coronal tear size" and the radiomic feature "AX_log-sigma-1-0-mm-3D_glszm_SmallAreaEmphasis" as key predictors of conservative treatment failure. We developed and validated an interpretable LightGBM machine learning model that integrates clinicoradiological and radiomic features to predict the failure of conservative treatment in LE. The model demonstrates high predictive accuracy and offers valuable insights into key prognostic factors.

Explainable deep learning for age and gender estimation in dental CBCT scans using attention mechanisms and multi task learning.

Pishghadam N, Esmaeilyfard R, Paknahad M

pubmed logopapersMay 24 2025
Accurate and interpretable age estimation and gender classification are essential in forensic and clinical diagnostics, particularly when using high-dimensional medical imaging data such as Cone Beam Computed Tomography (CBCT). Traditional CBCT-based approaches often suffer from high computational costs and limited interpretability, reducing their applicability in forensic investigations. This study aims to develop a multi-task deep learning framework that enhances both accuracy and explainability in CBCT-based age estimation and gender classification using attention mechanisms. We propose a multi-task learning (MTL) model that simultaneously estimates age and classifies gender using panoramic slices extracted from CBCT scans. To improve interpretability, we integrate Convolutional Block Attention Module (CBAM) and Grad-CAM visualization, highlighting relevant craniofacial regions. The dataset includes 2,426 CBCT images from individuals aged 7 to 23 years, and performance is assessed using Mean Absolute Error (MAE) for age estimation and accuracy for gender classification. The proposed model achieves a MAE of 1.08 years for age estimation and 95.3% accuracy in gender classification, significantly outperforming conventional CBCT-based methods. CBAM enhances the model's ability to focus on clinically relevant anatomical features, while Grad-CAM provides visual explanations, improving interpretability. Additionally, using panoramic slices instead of full 3D CBCT volumes reduces computational costs without sacrificing accuracy. Our framework improves both accuracy and interpretability in forensic age estimation and gender classification from CBCT images. By incorporating explainable AI techniques, this model provides a computationally efficient and clinically interpretable tool for forensic and medical applications.

Stroke prediction in elderly patients with atrial fibrillation using machine learning combined clinical and left atrial appendage imaging phenotypic features.

Huang H, Xiong Y, Yao Y, Zeng J

pubmed logopapersMay 24 2025
Atrial fibrillation (AF) is one of the primary etiologies for ischemic stroke, and it is of paramount importance to delineate the risk phenotypes among elderly AF patients and to investigate more efficacious models for predicting stroke risk. This single-center prospective cohort study collected clinical data and cardiac computed tomography angiography (CTA) images from elderly AF patients. The clinical phenotypes and left atrial appendage (LAA) radiomic phenotypes of elderly AF patients were identified through K-means clustering. The independent correlations between these phenotypes and stroke risk were subsequently analyzed. Machine learning algorithms-Logistic Regression, Naive Bayes, Support Vector Machine (SVM), Random Forest, and Extreme Gradient Boosting-were selected to develop a predictive model for stroke risk in this patient cohort. The model was assessed using the Area Under the Receiver Operating Characteristic Curve, Hosmer-Lemeshow tests, and Decision Curve Analysis. A total of 419 elderly AF patients (≥ 65 years old) were included. K-means clustering identified three clinical phenotypes: Group A (cardiac enlargement/dysfunction), Group B (normal phenotype), and Group C (metabolic/coagulation abnormalities). Stroke incidence was highest in Group A (19.3%) and Group C (14.5%) versus Group B (3.3%). Similarly, LAA radiomic phenotypes revealed elevated stroke risk in patients with enlarged LAA structure (Group B: 20.0%) and complex LAA morphology (Group C: 14.0%) compared to normal LAA (Group A: 2.9%). Among the five machine learning models, the SVM model achieved superior prediction performance (AUROC: 0.858 [95% CI: 0.830-0.887]). The stroke-risk prediction model for elderly AF patients constructed based on the SVM algorithm has strong predictive efficacy.
Page 205 of 2352341 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.