Sort by:
Page 2 of 19190 results

Deep learning-assisted detection of meniscus and anterior cruciate ligament combined tears in adult knee magnetic resonance imaging: a crossover study with arthroscopy correlation.

Behr J, Nich C, D'Assignies G, Zavastin C, Zille P, Herpe G, Triki R, Grob C, Pujol N

pubmed logopapersJul 1 2025
We aimed to compare the diagnostic performance of physicians in the detection of arthroscopically confirmed meniscus and anterior cruciate ligament (ACL) tears on knee magnetic resonance imaging (MRI), with and without assistance from a deep learning (DL) model. We obtained preoperative MR images from 88 knees of patients who underwent arthroscopic meniscal repair, with or without ACL reconstruction. Ninety-eight MR images of knees without signs of meniscus or ACL tears were obtained from a publicly available database after matching on age and ACL status (normal or torn), resulting in a global dataset of 186 MRI examinations. The Keros<sup>®</sup> (Incepto, Paris) DL algorithm, previously trained for the detection and characterization of meniscus and ACL tears, was used for MRI assessment. Magnetic resonance images were individually, and blindly annotated by three physicians and the DL algorithm. After three weeks, the three human raters repeated image assessment with model assistance, performed in a different order. The Keros<sup>®</sup> algorithm achieved an area under the curve (AUC) of 0.96 (95% CI 0.93, 0.99), 0.91 (95% CI 0.85, 0.96), and 0.99 (95% CI 0.98, 0.997) in the detection of medial meniscus, lateral meniscus and ACL tears, respectively. With model assistance, physicians achieved higher sensitivity (91% vs. 83%, p = 0.04) and similar specificity (91% vs. 87%, p = 0.09) in the detection of medial meniscus tears. Regarding lateral meniscus tears, sensitivity and specificity were similar with/without model assistance. Regarding ACL tears, physicians achieved higher specificity when assisted by the algorithm (70% vs. 51%, p = 0.01) but similar sensitivity with/without model assistance (93% vs. 96%, p = 0.13). The current model consistently helped physicians in the detection of medial meniscus and ACL tears, notably when they were combined. Diagnostic study, Level III.

Association between muscle mass assessed by an artificial intelligence-based ultrasound imaging system and quality of life in patients with cancer-related malnutrition.

de Luis D, Cebria A, Primo D, Izaola O, Godoy EJ, Gomez JJL

pubmed logopapersJul 1 2025
Emerging evidence suggests that diminished skeletal muscle mass is associated with lower health-related quality of life (HRQOL) in individuals with cancer. There are no studies that we know of in the literature that use ultrasound system to evaluate muscle mass and its relationship with HRQOL. The aim of our study was to evaluate the relationship between HRQOL determined by the EuroQol-5D tool and muscle mass determined by an artificial intelligence-based ultrasound system at the rectus femoris (RF) level in outpatients with cancer. Anthropometric data by bioimpedance (BIA), muscle mass by ultrasound by an artificial intelligence-based at the RF level, biochemistry determination, dynamometry and HRQOL were measured. A total of 158 patients with cancer were included with a mean age of 70.6 ±9.8 years. The mean body mass index was 24.4 ± 4.1 kg/m<sup>2</sup> with a mean body weight of 63.9 ± 11.7 kg (38% females and 62% males). A total of 57 patients had a severe degree of malnutrition (36.1%). The distribution of the location of the tumors was 66 colon-rectum cancer (41.7%), 56 esophageal-stomach cancer (35.4%), 16 pancreatic cancer (10.1%), and 20.2% other locations. A positive correlation cross-sectional area (CSA), muscle thickness (MT), pennation angle, (BIA) parameters, and muscle strength was detected. Patients in the groups below the median for the visual scale and the EuroQol-5D index had lower CSA and MT, BIA, and muscle strength values. CSA (beta 4.25, 95% CI 2.03-6.47) remained in the multivariate model as dependent variable (visual scale) and muscle strength (beta 0.008, 95% CI 0.003-0.14) with EuroQol-5D index. Muscle strength and pennation angle by US were associated with better score in dimensions of mobility, self-care, and daily activities. CSA, MT, and pennation angle of RF determined by an artificial intelligence-based muscle ultrasound system in outpatients with cancer were related to HRQOL determined by EuroQol-5D.

Comparison of CNNs and Transformer Models in Diagnosing Bone Metastases in Bone Scans Using Grad-CAM.

Pak S, Son HJ, Kim D, Woo JY, Yang I, Hwang HS, Rim D, Choi MS, Lee SH

pubmed logopapersJul 1 2025
Convolutional neural networks (CNNs) have been studied for detecting bone metastases on bone scans; however, the application of ConvNeXt and transformer models has not yet been explored. This study aims to evaluate the performance of various deep learning models, including the ConvNeXt and transformer models, in diagnosing metastatic lesions from bone scans. We retrospectively analyzed bone scans from patients with cancer obtained at 2 institutions: the training and validation sets (n=4626) were from Hospital 1 and the test set (n=1428) was from Hospital 2. The deep learning models evaluated included ResNet18, the Data-Efficient Image Transformer (DeiT), the Vision Transformer (ViT Large 16), the Swin Transformer (Swin Base), and ConvNeXt Large. Gradient-weighted class activation mapping (Grad-CAM) was used for visualization. Both the validation set and the test set demonstrated that the ConvNeXt large model (0.969 and 0.885, respectively) exhibited the best performance, followed by the Swin Base model (0.965 and 0.840, respectively), both of which significantly outperformed ResNet (0.892 and 0.725, respectively). Subgroup analyses revealed that all the models demonstrated greater diagnostic accuracy for patients with polymetastasis compared with those with oligometastasis. Grad-CAM visualization revealed that the ConvNeXt Large model focused more on identifying local lesions, whereas the Swin Base model focused on global areas such as the axial skeleton and pelvis. Compared with traditional CNN and transformer models, the ConvNeXt model demonstrated superior diagnostic performance in detecting bone metastases from bone scans, especially in cases of polymetastasis, suggesting its potential in medical image analysis.

SpineMamba: Enhancing 3D spinal segmentation in clinical imaging through residual visual Mamba layers and shape priors.

Zhang Z, Liu T, Fan G, Li N, Li B, Pu Y, Feng Q, Zhou S

pubmed logopapersJul 1 2025
Accurate segmentation of three-dimensional (3D) clinical medical images is critical for the diagnosis and treatment of spinal diseases. However, the complexity of spinal anatomy and the inherent uncertainties of current imaging technologies pose significant challenges for the semantic segmentation of spinal images. Although convolutional neural networks (CNNs) and Transformer-based models have achieved remarkable progress in spinal segmentation, their limitations in modeling long-range dependencies hinder further improvements in segmentation accuracy. To address these challenges, we propose a novel framework, SpineMamba, which incorporates a residual visual Mamba layer capable of effectively capturing and modeling the deep semantic features and long-range spatial dependencies in 3D spinal data. To further enhance the structural semantic understanding of the vertebrae, we also propose a novel spinal shape prior module that captures specific anatomical information about the spine from medical images, significantly enhancing the model's ability to extract structural semantic information of the vertebrae. Extensive comparative and ablation experiments across three datasets demonstrate that SpineMamba outperforms existing state-of-the-art models. On two computed tomography (CT) datasets, the average Dice similarity coefficients achieved are 94.40±4% and 88.28±3%, respectively, while on a magnetic resonance (MR) dataset, the model achieves a Dice score of 86.95±10%. Notably, SpineMamba surpasses the widely recognized nnU-Net in segmentation accuracy, with a maximum improvement of 3.63 percentage points. These results highlight the precision, robustness, and exceptional generalization capability of SpineMamba.

Added value of artificial intelligence for the detection of pelvic and hip fractures.

Jaillat A, Cyteval C, Baron Sarrabere MP, Ghomrani H, Maman Y, Thouvenin Y, Pastor M

pubmed logopapersJul 1 2025
To assess the added value of artificial intelligence (AI) for radiologists and emergency physicians in the radiographic detection of pelvic fractures. In this retrospective study, one junior radiologist reviewed 940 X-rays of patients admitted to emergency for a fall with suspicion of pelvic fracture between March 2020 and June 2021. The radiologist analyzed the X-rays alone and then using an AI system (BoneView). In a random sample of 100 exams, the same procedure was repeated alongside five other readers (three radiologists and two emergency physicians with 3-30 years of experience). The reference diagnosis was based on the patient's full set of medical imaging exams and medical records in the months following emergency admission. A total of 633 confirmed pelvic fractures (64.8% from hip and 35.2% from pelvic ring) in 940 patients and 68 pelvic fractures (60% from hip and 40% from pelvic ring) in the 100-patient sample were included. In the whole dataset, the junior radiologist achieved a significant sensitivity improvement with AI assistance (Se<sub>-PELVIC</sub> = 77.25% to 83.73%; p < 0.001, Se<sub>-HIP</sub> 93.24 to 96.49%; p < 0.001 and Se<sub>-PELVIC RING</sub> 54.60% to 64.50%; p < 0.001). However, there was a significant decrease in specificity with AI assistance (Spe<sub>-PELVIC</sub> = 95.24% to 93.25%; p = 0.005 and Spe<sub>-HIP</sub> = 98.30% to 96.90%; p = 0.005). In the 100-patient sample, the two emergency physicians obtained an improvement in fracture detection sensitivity across the pelvic area + 14.70% (p = 0.0011) and + 10.29% (p < 0.007) respectively without a significant decrease in specificity. For hip fractures, E1's sensitivity increased from 59.46% to 70.27% (p = 0.04), and E2's sensitivity increased from 78.38% to 86.49% (p = 0.08). For pelvic ring fractures, E1's sensitivity increased from 12.90% to 32.26% (p = 0.012), and E2's sensitivity increased from 19.35% to 32.26% (p = 0.043). AI improved the diagnostic performance for emergency physicians and radiologists with limited experience in pelvic fracture screening.

The impact of multi-modality fusion and deep learning on adult age estimation based on bone mineral density.

Cao Y, Zhang J, Ma Y, Zhang S, Li C, Liu S, Chen F, Huang P

pubmed logopapersJul 1 2025
Age estimation, especially in adults, presents substantial challenges in different contexts ranging from forensic to clinical applications. Bone mineral density (BMD), with its distinct age-related variations, has emerged as a critical marker in this domain. This study aims to enhance chronological age estimation accuracy using deep learning (DL) incorporating a multi-modality fusion strategy based on BMD. We conducted a retrospective analysis of 4296 CT scans from a Chinese population, covering August 2015 to November 2022, encompassing lumbar, femur, and pubis modalities. Our DL approach, integrating multi-modality fusion, was applied to predict chronological age automatically. The model's performance was evaluated using an internal real-world clinical cohort of 644 scans (December 2022 to May 2023) and an external cadaver validation cohort of 351 scans. In single-modality assessments, the lumbar modality excelled. However, multi-modality models demonstrated superior performance, evidenced by lower mean absolute errors (MAEs) and higher Pearson's R² values. The optimal multi-modality model exhibited outstanding R² values of 0.89 overall, 0.88 in females, 0.90 in males, with the MAEs of 4.05 overall, 3.69 in females, 4.33 in males in the internal validation cohort. In the external cadaver validation, the model maintained favourable R² values (0.84 overall, 0.89 in females, 0.82 in males) and MAEs (5.01 overall, 4.71 in females, 5.09 in males), highlighting its generalizability across diverse scenarios. The integration of multi-modalities fusion with DL significantly refines the accuracy of adult age estimation based on BMD. The AI-based system that effectively combines multi-modalities BMD data, presenting a robust and innovative tool for accurate AAE, poised to significantly improve both geriatric diagnostics and forensic investigations.

Automated Scoliosis Cobb Angle Classification in Biplanar Radiograph Imaging With Explainable Machine Learning Models.

Yu J, Lahoti YS, McCandless KC, Namiri NK, Miyasaka MS, Ahmed H, Song J, Corvi JJ, Berman DC, Cho SK, Kim JS

pubmed logopapersJul 1 2025
Retrospective cohort study. To quantify the pathology of the spine in patients with scoliosis through one-dimensional feature analysis. Biplanar radiograph (EOS) imaging is a low-dose technology offering high-resolution spinal curvature measurement, crucial for assessing scoliosis severity and guiding treatment decisions. Machine learning (ML) algorithms, utilizing one-dimensional image features, can enable automated Cobb angle classification, improving accuracy and efficiency in scoliosis evaluation while reducing the need for manual measurements, thus supporting clinical decision-making. This study used 816 annotated AP EOS spinal images with a spine segmentation mask and a 10° polynomial to represent curvature. Engineered features included the first and second derivatives, Fourier transform, and curve energy, normalized for robustness. XGBoost selected the top 32 features. The models classified scoliosis into multiple groups based on curvature degree, measured through Cobb angle. To address the class imbalance, stratified sampling, undersampling, and oversampling techniques were used, with 10-fold stratified K-fold cross-validation for generalization. An automatic grid search was used for hyperparameter optimization, with K-fold cross-validation (K=3). The top-performing model was Random Forest, achieving an ROC AUC of 91.8%. An accuracy of 86.1%, precision of 86.0%, recall of 86.0%, and an F1 score of 85.1% were also achieved. Of the three techniques used to address class imbalance, stratified sampling produced the best out-of-sample results. SHAP values were generated for the top 20 features, including spine curve length and linear regression error, with the most predictive features ranked at the top, enhancing model explainability. Feature engineering with classical ML methods offers an effective approach for classifying scoliosis severity based on Cobb angle ranges. The high interpretability of features in representing spinal pathology, along with the ease of use of classical ML techniques, makes this an attractive solution for developing automated tools to manage complex spinal measurements.

A Workflow-Efficient Approach to Pre- and Post-Operative Assessment of Weight-Bearing Three-Dimensional Knee Kinematics.

Banks SA, Yildirim G, Jachode G, Cox J, Anderson O, Jensen A, Cole JD, Kessler O

pubmed logopapersJul 1 2025
Knee kinematics during daily activities reflect disease severity preoperatively and are associated with clinical outcomes after total knee arthroplasty (TKA). It is widely believed that measured kinematics would be useful for preoperative planning and postoperative assessment. Despite decades-long interest in measuring three-dimensional (3D) knee kinematics, no methods are available for routine, practical clinical examinations. We report a clinically practical method utilizing machine-learning-enhanced software and upgraded C-arm fluoroscopy for the accurate and time-efficient measurement of pre-TKA and post-TKA 3D dynamic knee kinematics. Using a common C-arm with an upgraded detector and software, we performed an 8-s horizontal sweeping pulsed fluoroscopic scan of the weight-bearing knee joint. The patient's knee was then imaged using pulsed C-arm fluoroscopy while performing standing, kneeling, squatting, stair, chair, and gait motion activities. We used limited-arc cone-beam reconstruction methods to create 3D models of the femur and tibia/fibula bones with implants, which can then be used to perform model-image registration to quantify the 3D knee kinematics. The proposed protocol can be accomplished by an individual radiology technician in ten minutes and does not require additional equipment beyond a step and stool. The image analysis can be performed by a computer onboard the upgraded c-arm or in the cloud, before loading the examination results into the Picture Archiving and Communication System and Electronic Medical Record systems. Weight-bearing kinematics affects knee function pre- and post-TKA. It has long been exclusively the domain of researchers to make such measurements. We present an approach that leverages common, but digitally upgraded, imaging hardware and software to implement an efficient examination protocol for accurately assessing 3D knee kinematics. With these capabilities, it will be possible to include dynamic 3D knee kinematics as a component of the routine clinical workup for patients who have diseased or replaced knees.

Identifying Primary Sites of Spinal Metastases: Expert-Derived Features vs. ResNet50 Model Using Nonenhanced MRI.

Liu K, Ning J, Qin S, Xu J, Hao D, Lang N

pubmed logopapersJul 1 2025
The spinal column is a frequent site for metastases, affecting over 30% of solid tumor patients. Identifying the primary tumor is essential for guiding clinical decisions but often requires resource-intensive diagnostics. To develop and validate artificial intelligence (AI) models using noncontrast MRI to identify primary sites of spinal metastases, aiming to enhance diagnostic efficiency. Retrospective. A total of 514 patients with pathologically confirmed spinal metastases (mean age, 59.3 ± 11.2 years; 294 males) were included, split into a development set (360) and a test set (154). Noncontrast sagittal MRI sequences (T1-weighted, T2-weighted, and fat-suppressed T2) were acquired using 1.5 T and 3 T scanners. Two models were evaluated for identifying primary sites of spinal metastases: the expert-derived features (EDF) model using radiologist-identified imaging features and a ResNet50-based deep learning (DL) model trained on noncontrast MRI. Performance was assessed using accuracy, precision, recall, F1 score, and the area under the receiver operating characteristic curve (ROC-AUC) for top-1, top-2, and top-3 indicators. Statistical analyses included Shapiro-Wilk, t tests, Mann-Whitney U test, and chi-squared tests. ROC-AUCs were compared via DeLong tests, with 95% confidence intervals from 1000 bootstrap replications and significance at P < 0.05. The EDF model outperformed the DL model in top-3 accuracy (0.88 vs. 0.69) and AUC (0.80 vs. 0.71). Subgroup analysis showed superior EDF performance for common sites like lung and kidney (e.g., kidney F1: 0.94 vs. 0.76), while the DL model had higher recall for rare sites like thyroid (0.80 vs. 0.20). SHapley Additive exPlanations (SHAP) analysis identified sex (SHAP: -0.57 to 0.68), age (-0.48 to 0.98), T1WI signal intensity (-0.29 to 0.72), and pathological fractures (-0.76 to 0.25) as key features. AI techniques using noncontrast MRI improve diagnostic efficiency for spinal metastases. The EDF model outperformed the DL model, showing greater clinical potential. Spinal metastases, or cancer spreading to the spine, are common in patients with advanced cancer, often requiring extensive tests to determine the original tumor site. Our study explored whether artificial intelligence could make this process faster and more accurate using noncontrast MRI scans. We tested two methods: one based on radiologists' expertise in identifying imaging features and another using a deep learning model trained to analyze MRI images. The expert-based method was more reliable, correctly identifying the tumor site in 88% of cases when considering the top three likely diagnoses. This approach may help doctors reduce diagnostic time and improve patient care. 3 TECHNICAL EFFICACY: Stage 2.

Visualizing Preosteoarthritis: Updates on UTE-Based Compositional MRI and Deep Learning Algorithms.

Sun D, Wu G, Zhang W, Gharaibeh NM, Li X

pubmed logopapersJul 1 2025
Osteoarthritis (OA) is heterogeneous and involves structural changes in the whole joint, such as cartilage, meniscus/labrum, ligaments, and tendons, mainly with short T2 relaxation times. Detecting OA before the onset of irreversible changes is crucial for early proactive management and limit growing disease burden. The more recent advanced quantitative imaging techniques and deep learning (DL) algorithms in musculoskeletal imaging have shown great potential for visualizing "pre-OA." In this review, we first focus on ultrashort echo time-based magnetic resonance imaging (MRI) techniques for direct visualization as well as quantitative morphological and compositional assessment of both short- and long-T2 musculoskeletal tissues, and second explore how DL revolutionize the way of MRI analysis (eg, automatic tissue segmentation and extraction of quantitative image biomarkers) and the classification, prediction, and management of OA. PLAIN LANGUAGE SUMMARY: Detecting osteoarthritis (OA) before the onset of irreversible changes is crucial for early proactive management. OA is heterogeneous and involves structural changes in the whole joint, such as cartilage, meniscus/labrum, ligaments, and tendons, mainly with short T2 relaxation times. Ultrashort echo time-based magnetic resonance imaging (MRI), in particular, enables direct visualization and quantitative compositional assessment of short-T2 tissues. Deep learning is revolutionizing the way of MRI analysis (eg, automatic tissue segmentation and extraction of quantitative image biomarkers) and the detection, classification, and prediction of disease. They together have made further advances toward identification of imaging biomarkers/features for pre-OA. LEVEL OF EVIDENCE: 5 TECHNICAL EFFICACY: Stage 2.
Page 2 of 19190 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.