A Co-Plane Machine Learning Model Based on Ultrasound Radiomics for the Evaluation of Diabetic Peripheral Neuropathy.
Authors
Affiliations (3)
Affiliations (3)
- Department of Ultrasound, Shaoxing People's Hospital (The First Affiliated Hospital, Shaoxing University), Shaoxing, China (Y.J., R.P., X.L., H.S., Z.Y., Z.J.).
- Department of Ultrasound, Xiamen Hospital of Traditional Chinese Medicine, Xiamen, China (M.X.).
- Department of Ultrasound, Shaoxing People's Hospital (The First Affiliated Hospital, Shaoxing University), Shaoxing, China (Y.J., R.P., X.L., H.S., Z.Y., Z.J.). Electronic address: [email protected].
Abstract
Detection of diabetic peripheral neuropathy (DPN) is critical for preventing severe complications. Machine learning (ML) and radiomics offer promising approaches for the diagnosis of DPN; however, their application in ultrasound-based detection of DPN remains limited. Moreover, there is no consensus on whether longitudinal or transverse ultrasound planes provide more robust radiomic features for nerve evaluation. This study aimed to analyze and compare radiomic features from different ultrasound planes of the tibial nerve and to develop a co-plane fusion ML model to enhance the diagnostic accuracy of DPN. In our study, a total of 516 feet from 262 diabetics across two institutions was analyzed and stratified into a training cohort (n = 309), an internal testing cohort (n = 133), and an external testing cohort (n = 74). A total of 1316 radiomic features were extracted from both transverse and longitudinal planes of the tibial nerve. After feature selection, six ML algorithms were utilized to construct radiomics models based on transverse, longitudinal, and combined planes. The performance of these models was assessed using receiver operating characteristic curves, calibration curves, and decision curve analysis (DCA). Shapley Additive exPlanations (SHAP) were employed to elucidate the key features and their contributions to predictions within the optimal model. The co-plane Support Vector Machine (SVM) model exhibited superior performance, achieving AUC values of 0.90 (95% CI: 0.86-0.93), 0.88 (95% CI: 0.84-0.91), and 0.70 (95% CI: 0.64-0.76) in the training, internal testing, and external testing cohorts, respectively. These results significantly exceeded those of the single-plane models, as determined by the DeLong test (P < 0.05). Calibration curves and DCA curve indicated a good model fit and suggested potential clinical utility. Furthermore, SHAP were employed to explain the model. The co-plane SVM model, which integrates transverse and longitudinal radiomic features of the tibial nerve, demonstrated optimal performance in DPN prediction, thereby significantly enhancing the efficacy of DPN diagnosis. This model may serve as a robust tool for noninvasive assessment of DPN, highlighting its promising applicability in clinical settings.