Sort by:
Page 2 of 27270 results

Beyond Pixels: Medical Image Quality Assessment with Implicit Neural Representations

Caner Özer, Patryk Rygiel, Bram de Wilde, İlkay Öksüz, Jelmer M. Wolterink

arxiv logopreprintAug 7 2025
Artifacts pose a significant challenge in medical imaging, impacting diagnostic accuracy and downstream analysis. While image-based approaches for detecting artifacts can be effective, they often rely on preprocessing methods that can lead to information loss and high-memory-demand medical images, thereby limiting the scalability of classification models. In this work, we propose the use of implicit neural representations (INRs) for image quality assessment. INRs provide a compact and continuous representation of medical images, naturally handling variations in resolution and image size while reducing memory overhead. We develop deep weight space networks, graph neural networks, and relational attention transformers that operate on INRs to achieve image quality assessment. Our method is evaluated on the ACDC dataset with synthetically generated artifact patterns, demonstrating its effectiveness in assessing image quality while achieving similar performance with fewer parameters.

Artificial Intelligence Iterative Reconstruction Algorithm Combined with Low-Dose Aortic CTA for Preoperative Access Assessment of Transcatheter Aortic Valve Implantation: A Prospective Cohort Study.

Li Q, Liu D, Li K, Li J, Zhou Y

pubmed logopapersAug 6 2025
This study aimed to explore whether an artificial intelligence iterative reconstruction (AIIR) algorithm combined with low-dose aortic computed tomography angiography (CTA) demonstrates clinical effectiveness in assessing preoperative access for transcatheter aortic valve implantation (TAVI). A total of 109 patients were prospectively recruited for aortic CTA scans and divided into two groups: group A (n = 51) with standard-dose CT examinations (SDCT) and group B (n = 58) with low-dose CT examinations (LDCT). Group B was further subdivided into groups B1 and B2. Groups A and B2 used the hybrid iterative algorithm (HIR: Karl 3D), whereas Group B1 used the AIIR algorithm. CT attenuation and noise of different vessel segments were measured, and the contrast-to-noise ratio (CNR) and signal-to-noise ratio (SNR) were calculated. Two radiologists, who were blinded to the study details, rated the subjective image quality on a 5-point scale. The effective radiation doses were also recorded for groups A and B. Group B1 demonstrated the highest CT attenuation, SNR, and CNR and the lowest image noise among the three groups (p < 0.05). The scores of subjective image noise, vessel and non-calcified plaque edge sharpness, and overall image quality in Group B1 were higher than those in groups A and B2 (p < 0.001). Group B2 had the highest artifacts scores compared with groups A and B1 (p < 0.05). The radiation dose in group B was reduced by 50.33% compared with that in group A (p < 0.001). The AIIR algorithm combined with low-dose CTA yielded better diagnostic images before TAVI than the Karl 3D algorithm.

Beyond the type 1 pattern: comprehensive risk stratification in Brugada syndrome.

Kan KY, Van Wyk A, Paterson T, Ninan N, Lysyganicz P, Tyagi I, Bhasi Lizi R, Boukrid F, Alfaifi M, Mishra A, Katraj SVK, Pooranachandran V

pubmed logopapersAug 6 2025
Brugada Syndrome (BrS) is an inherited cardiac ion channelopathy associated with an elevated risk of sudden cardiac death, particularly due to ventricular arrhythmias in structurally normal hearts. Affecting approximately 1 in 2,000 individuals, BrS is most prevalent among middle-aged males of Asian descent. Although diagnosis is based on the presence of a Type 1 electrocardiographic (ECG) pattern, either spontaneous or induced, accurately stratifying risk in asymptomatic and borderline patients remains a major clinical challenge. This review explores current and emerging approaches to BrS risk stratification, focusing on electrocardiographic, electrophysiological, imaging, and computational markers. Non-invasive ECG indicators such as the β-angle, fragmented QRS, S wave in lead I, early repolarisation, aVR sign, and transmural dispersion of repolarisation have demonstrated predictive value for arrhythmic events. Adjunctive tools like signal-averaged ECG, Holter monitoring, and exercise stress testing enhance diagnostic yield by capturing dynamic electrophysiological changes. In parallel, imaging modalities, particularly speckle-tracking echocardiography and cardiac magnetic resonance have revealed subclinical structural abnormalities in the right ventricular outflow tract and atria, challenging the paradigm of BrS as a purely electrical disorder. Invasive electrophysiological studies and substrate mapping have further clarified the anatomical basis of arrhythmogenesis, while risk scoring systems (e.g., Sieira, BRUGADA-RISK, PAT) and machine learning models offer new avenues for personalised risk assessment. Together, these advances underscore the importance of an integrated, multimodal approach to BrS risk stratification. Optimising these strategies is essential to guide implantable cardioverter-defibrillator decisions and improve outcomes in patients vulnerable to life-threatening arrhythmias.

AI-Guided Cardiac Computer Tomography in Type 1 Diabetes Patients with Low Coronary Artery Calcium Score.

Wohlfahrt P, Pazderník M, Marhefková N, Roland R, Adla T, Earls J, Haluzík M, Dubský M

pubmed logopapersAug 6 2025
<b><i>Objective:</i></b> Cardiovascular risk stratification based on traditional risk factors lacks precision at the individual level. While coronary artery calcium (CAC) scoring enhances risk prediction by detecting calcified atherosclerotic plaques, it may underestimate risk in individuals with noncalcified plaques-a pattern common in younger type 1 diabetes (T1D) patients. Understanding the prevalence of noncalcified atherosclerosis in T1D is crucial for developing more effective screening strategies. Therefore, this study aimed to assess the burden of clinically significant atherosclerosis in T1D patients with CAC <100 using artificial intelligence (AI)-guided quantitative coronary computed tomographic angiography (AI-QCT). <b><i>Methods:</i></b> This study enrolled T1D patients aged ≥30 years with disease duration ≥10 years and no manifest or symptomatic atherosclerotic cardiovascular disease (ASCVD). CAC and carotid ultrasound were assessed in all participants. AI-QCT was performed in patients with CAC 0 and at least one plaque in the carotid arteries or those with CAC 1-99. <b><i>Results:</i></b> Among the 167 participants (mean age 52 ± 10 years; 44% women; T1D duration 29 ± 11 years), 93 (56%) had CAC = 0, 46 (28%) had CAC 1-99, 8 (5%) had CAC 100-299, and 20 (12%) had CAC ≥300. AI-QCT was performed in a subset of 52 patients. Only 11 (21%) had no evidence of coronary artery disease. Significant coronary stenosis was identified in 17% of patients, and 30 (73%) presented with at least one high-risk plaque. Compared with CAC-based risk categories, AI-QCT reclassified 58% of patients, and 21% compared with the STENO1 risk categories. There was only fair agreement between AI-QCT and CAC (κ = 0.25), and a slight agreement between AI-QCT and STENO1 risk categories (κ = 0.02). <b><i>Conclusion:</i></b> AI-QCT may reveal subclinical atherosclerotic burden and high-risk features that remain undetected by traditional risk models or CAC. These findings challenge the assumption that a low CAC score equates to a low cardiovascular risk in T1D.

Artificial Intelligence and Extended Reality in TAVR: Current Applications and Challenges.

Skalidis I, Sayah N, Benamer H, Amabile N, Laforgia P, Champagne S, Hovasse T, Garot J, Garot P, Akodad M

pubmed logopapersAug 6 2025
Integration of AI and XR in TAVR is revolutionizing the management of severe aortic stenosis by enhancing diagnostic accuracy, risk stratification, and pre-procedural planning. Advanced algorithms now facilitate precise electrocardiographic, echocardiographic, and CT-based assessments that reduce observer variability and enable patient-specific risk prediction. Immersive XR technologies, including augmented, virtual, and mixed reality, improve spatial visualization of complex cardiac anatomy and support real-time procedural guidance. Despite these advancements, standardized protocols, regulatory frameworks, and ethical safeguards remain necessary for widespread clinical adoption.

TRI-PLAN: A deep learning-based automated assessment framework for right heart assessment in transcatheter tricuspid valve replacement planning.

Yang T, Wang Y, Zhu G, Liu W, Cao J, Liu Y, Lu F, Yang J

pubmed logopapersAug 6 2025
Efficient and accurate preoperative assessment of the right-sided heart structural complex (RSHSc) is crucial for planning transcatheter tricuspid valve replacement (TTVR). However, current manual methods remain time-consuming and inconsistent. To address this unmet clinical need, this study aimed to develop and validate TRI-PLAN, the first fully automated, deep learning (DL)-based framework for pre-TTVR assessment. A total of 140 preprocedural computed tomography angiography (CTA) scans (63,962 slices) from patients with severe tricuspid regurgitation (TR) at two high-volume cardiac centers in China were retrospectively included. The patients were divided into a training cohort (n = 100), an internal validation cohort (n = 20), and an external validation cohort (n = 20). TRI-PLAN was developed by a dual-stage right heart assessment network (DRA-Net) to segment the RSHSc and localize the tricuspid annulus (TA), followed by automated measurement of key anatomical parameters and right ventricular ejection fraction (RVEF). Performance was comprehensively evaluated in terms of accuracy, interobserver benchmark comparison, clinical usability, and workflow efficiency. TRI-PLAN achieved expert-level segmentation accuracy (volumetric Dice 0.952/0.955; surface Dice 0.934/0.940), precise localization (standard deviation 1.18/1.14 mm), excellent measurement agreement (ICC 0.984/0.979) and reliable RVEF evaluation (R = 0.97, bias<5 %) across internal and external cohorts. In addition, TRI-PLAN obtained a direct acceptance rate of 80 % and reduced total assessment time from 30 min manually to under 2 min (>95 % time saving). TRI-PLAN provides an accurate, efficient, and clinically applicable solution for pre-TTVR assessment, with strong potential to streamline TTVR planning and enhance procedural outcomes.

Augmentation-based Domain Generalization and Joint Training from Multiple Source Domains for Whole Heart Segmentation

Franz Thaler, Darko Stern, Gernot Plank, Martin Urschler

arxiv logopreprintAug 6 2025
As the leading cause of death worldwide, cardiovascular diseases motivate the development of more sophisticated methods to analyze the heart and its substructures from medical images like Computed Tomography (CT) and Magnetic Resonance (MR). Semantic segmentations of important cardiac structures that represent the whole heart are useful to assess patient-specific cardiac morphology and pathology. Furthermore, accurate semantic segmentations can be used to generate cardiac digital twin models which allows e.g. electrophysiological simulation and personalized therapy planning. Even though deep learning-based methods for medical image segmentation achieved great advancements over the last decade, retaining good performance under domain shift -- i.e. when training and test data are sampled from different data distributions -- remains challenging. In order to perform well on domains known at training-time, we employ a (1) balanced joint training approach that utilizes CT and MR data in equal amounts from different source domains. Further, aiming to alleviate domain shift towards domains only encountered at test-time, we rely on (2) strong intensity and spatial augmentation techniques to greatly diversify the available training data. Our proposed whole heart segmentation method, a 5-fold ensemble with our contributions, achieves the best performance for MR data overall and a performance similar to the best performance for CT data when compared to a model trained solely on CT. With 93.33% DSC and 0.8388 mm ASSD for CT and 89.30% DSC and 1.2411 mm ASSD for MR data, our method demonstrates great potential to efficiently obtain accurate semantic segmentations from which patient-specific cardiac twin models can be generated.

The REgistry of Flow and Perfusion Imaging for Artificial INtelligEnce with PET(REFINE PET): Rationale and Design.

Ramirez G, Lemley M, Shanbhag A, Kwiecinski J, Miller RJH, Kavanagh PB, Liang JX, Dey D, Slipczuk L, Travin MI, Alexanderson E, Carvajal-Juarez I, Packard RRS, Al-Mallah M, Einstein AJ, Feher A, Acampa W, Knight S, Le VT, Mason S, Sanghani R, Wopperer S, Chareonthaitawee P, Buechel RR, Rosamond TL, deKemp RA, Berman DS, Di Carli MF, Slomka PJ

pubmed logopapersAug 5 2025
The REgistry of Flow and Perfusion Imaging for Artificial Intelligence with PET (REFINE PET) was established to collect multicenter PET and associated computed tomography (CT) images, together with clinical data and outcomes, into a comprehensive research resource. REFINE PET will enable validation and development of both standard and novel cardiac PET/CT processing methods. REFINE PET is a multicenter, international registry that contains both clinical and imaging data. The PET scans were processed using QPET software (Cedars-Sinai Medical Center, Los Angeles, CA), while the CT scans were processed using deep learning (DL) to detect coronary artery calcium (CAC). Patients were followed up for the occurrence of major adverse cardiovascular events (MACE), which include death, myocardial infarction, unstable angina, and late revascularization (>90 days from PET). The REFINE PET registry currently contains data for 35,588 patients from 14 sites, with additional patient data and sites anticipated. Comprehensive clinical data (including demographics, medical history, and stress test results) were integrated with more than 2200 imaging variables across 42 categories. The registry is poised to address a broad range of clinical questions, supported by correlating invasive angiography (within 6 months of MPI) in 5972 patients and a total of 9252 major adverse cardiovascular events during a median follow-up of 4.2 years. The REFINE PET registry leverages the integration of clinical, multimodality imaging, and novel quantitative and AI tools to advance the role of PET/CT MPI in diagnosis and risk stratification.

Vessel-specific reliability of artificial intelligence-based coronary artery calcium scoring on non-ECG-gated chest CT: a comparative study with ECG-gated cardiac CT.

Zhang J, Liu K, You C, Gong J

pubmed logopapersAug 4 2025
To evaluate the performance of artificial intelligence (AI)-based coronary artery calcium scoring (CACS) on non-electrocardiogram (ECG)-gated chest CT, using manual quantification as the reference standard, while characterizing per-vessel reliability and clinical risk classification impacts. Retrospective study of 290 patients (June 2023-2024) with paired non-ECG-gated chest CT and ECG-gated cardiac CT (median time was 2 days). AI-based CACS and manual CACS (CACS_man) were compared using intraclass correlation coefficient (ICC) and weighted Cohen's kappa (3,1). Error types, anatomical distributions, and CACS of the lesions of individual arteries or segments were assessed in accordance with the Society of Cardiovascular Computed Tomography (SCCT) guidelines. The total CACS of chest CT demonstrated excellent concordance with CACS_man (ICC = 0.87, 95 % CI 0.84-0.90). Non-ECG-gated chest showed a 7.5-fold increased risk misclassification rate compared to ECG-gated cardiac CT (41.4 % vs. 5.5 %), with 35.5 % overclassification and 5.9 % underclassification. Vessel-specific analysis revealed paradoxical reliability of the left anterior descending artery (LAD) due to stent misclassification in four cases (ICC = 0.93 on chest CT vs 0.82 on cardiac CT), while the right coronary artery (RCA) demonstrated suboptimal performance with ICCs ranging from 0.60 to 0.68. Chest CT exhibited higher false-positive (1.9 % vs 0.5 %) and false-negative rates (14.4 % vs 4.3 %). False positive mainly derived from image noise in proximal LAD/RCA (median CACS 5.97 vs 3.45) and anatomical error, while false negatives involved RCA microcalcifications (median CACS 2.64). AI-based non-ECG-gated chest CT demonstrates utility for opportunistic screening but requires protocol optimization to address vessel-specific limitations and mitigate 41.4 % risk misclassification rates.

Deep Learning in Myocarditis: A Novel Approach to Severity Assessment

Nishimori, M., Otani, T., Asaumi, Y., Ohta-Ogo, K., Ikeda, Y., Amemiya, K., Noguchi, T., Izumi, C., Shinohara, M., Hatakeyama, K., Nishimura, K.

medrxiv logopreprintAug 2 2025
BackgroundMyocarditis is a life-threatening disease with significant hemodynamic risks during the acute phase. Although histopathological examination of myocardial biopsy specimens remains the gold standard for diagnosis, there is no established method for objectively quantifying cardiomyocyte damage. We aimed to develop an AI model to evaluate clinical myocarditis severity using comprehensive pathology data. MethodsWe retrospectively analyzed 314 patients (1076 samples) who underwent myocardial biopsy from 2002 to 2021 at the National Cerebrovascular Center. Among these patients, 158 were diagnosed with myocarditis based on the Dallas criteria. A Multiple Instance Learning (MIL) model served as a pre-trained classifier to detect myocarditis across whole-slide images. We then constructed two clinical severity-prediction models: (1) a logistic regression model (Model 1) using the density of inflammatory cells per unit area, and (2) a Transformer-based model (Model 2), which processed the top-ranked patches identified by the MIL model to predict clinical severe outcomes. ResultsModel 1 achieved an AUROC of 0.809, indicating a robust association between inflammatory cell density and severe myocarditis. In contrast, Model 2, the Transformer-based approach, yielded an AUROC of 0.993 and demonstrated higher accuracy and precision for severity prediction. Attention score visualizations showed that Model 2 captured both inflammatory cell infiltration and additional morphological features. These findings suggest that combining MIL with Transformer architectures enables more comprehensive identification of key histological markers associated with clinical severe disease. ConclusionsOur results highlight that a Transformer-based AI model analyzing whole-slide pathology images can accurately assess clinical myocarditis severity. Moreover, simply quantifying the extent of inflammatory cell infiltration also correlates strongly with clinical outcomes. These methods offer a promising avenue for improving diagnostic precision, guiding treatment decisions, and ultimately enhancing patient management. Future prospective studies are warranted to validate these models in broader clinical settings and facilitate their integration into routine pathological workflows. What is new?- This is the first study to apply an AI model for the diagnosis and severity assessment of myocarditis. - New evidence shows that inflammatory cell infiltration is related to the severity of myocarditis. - Using information from the entire tissue, not just inflammatory cells, allows for a more accurate assessment of myocarditis severity. What are the clinical implications?- The use of the AI model allows for an unprecedented histological evaluation of myocarditis severity, which can enhance early diagnosis and intervention strategies. - Rapid and precise assessments of myocarditis severity by the AI model can support clinicians in making timely and appropriate treatment decisions, potentially improving patient outcomes. - The incorporation of this AI model into clinical practice may streamline diagnostic workflows and optimize the allocation of medical resources, enhancing overall patient care.
Page 2 of 27270 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.