Sort by:
Page 195 of 3993982 results

Automation in tibial implant loosening detection using deep-learning segmentation.

Magg C, Ter Wee MA, Buijs GS, Kievit AJ, Schafroth MU, Dobbe JGG, Streekstra GJ, Sánchez CI, Blankevoort L

pubmed logopapersJun 27 2025
Patients with recurrent complaints after total knee arthroplasty may suffer from aseptic implant loosening. Current imaging modalities do not quantify looseness of knee arthroplasty components. A recently developed and validated workflow quantifies the tibial component displacement relative to the bone from CT scans acquired under valgus and varus load. The 3D analysis approach includes segmentation and registration of the tibial component and bone. In the current approach, the semi-automatic segmentation requires user interaction, adding complexity to the analysis. The research question is whether the segmentation step can be fully automated while keeping outcomes indifferent. In this study, different deep-learning (DL) models for fully automatic segmentation are proposed and evaluated. For this, we employ three different datasets for model development (20 cadaveric CT pairs and 10 cadaveric CT scans) and evaluation (72 patient CT pairs). Based on the performance on the development dataset, the final model was selected, and its predictions replaced the semi-automatic segmentation in the current approach. Implant displacement was quantified by the rotation about the screw-axis, maximum total point motion, and mean target registration error. The displacement parameters of the proposed approach showed a statistically significant difference between fixed and loose samples in a cadaver dataset, as well as between asymptomatic and loose samples in a patient dataset, similar to the outcomes of the current approach. The methodological error calculated on a reproducibility dataset showed values that were not statistically significant different between the two approaches. The results of the proposed and current approaches showed excellent reliability for one and three operators on two datasets. The conclusion is that a full automation in knee implant displacement assessment is feasible by utilizing a DL-based segmentation model while maintaining the capability of distinguishing between fixed and loose implants.

Catheter detection and segmentation in X-ray images via multi-task learning.

Xi L, Ma Y, Koland E, Howell S, Rinaldi A, Rhode KS

pubmed logopapersJun 27 2025
Automated detection and segmentation of surgical devices, such as catheters or wires, in X-ray fluoroscopic images have the potential to enhance image guidance in minimally invasive heart surgeries. In this paper, we present a convolutional neural network model that integrates a resnet architecture with multiple prediction heads to achieve real-time, accurate localization of electrodes on catheters and catheter segmentation in an end-to-end deep learning framework. We also propose a multi-task learning strategy in which our model is trained to perform both accurate electrode detection and catheter segmentation simultaneously. A key challenge with this approach is achieving optimal performance for both tasks. To address this, we introduce a novel multi-level dynamic resource prioritization method. This method dynamically adjusts sample and task weights during training to effectively prioritize more challenging tasks, where task difficulty is inversely proportional to performance and evolves throughout the training process. The proposed method has been validated on both public and private datasets for single-task catheter segmentation and multi-task catheter segmentation and detection. The performance of our method is also compared with existing state-of-the-art methods, demonstrating significant improvements, with a mean <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>J</mi></math> of 64.37/63.97 and with average precision over all IoU thresholds of 84.15/83.13, respectively, for detection and segmentation multi-task on the validation and test sets of the catheter detection and segmentation dataset. Our approach achieves a good balance between accuracy and efficiency, making it well-suited for real-time surgical guidance applications.

Hybrid segmentation model and CAViaR -based Xception Maxout network for brain tumor detection using MRI images.

Swapna S, Garapati Y

pubmed logopapersJun 27 2025
Brain tumor (BT) is a rapid growth of brain cells. If the BT is not identified and treated in the first stage, it could cause death. Despite several methods and efforts being developed for segmenting and identifying BT, the detection of BT is complicated due to the distinct position of the tumor and its size. To solve such issues, this paper proposes the Conditional Autoregressive Value-at-Risk_Xception Maxout-Network (Caviar_XM-Net) for BT detection utilizing magnetic resonance imaging (MRI) images. The input MRI image gathered from the dataset is denoised using the adaptive bilateral filter (ABF), and tumor region segmentation is done using BFC-MRFNet-RVSeg. Here, the segmentation is done by the Bayesian fuzzy clustering (BFC) and multi-branch residual fusion network (MRF-Net) separately. Subsequently, outputs from both segmentation techniques are combined using the RV coefficient. Image augmentation is performed to boost the quantity of images in the training process. Afterwards, feature extraction is done, where features, like local optimal oriented pattern (LOOP), convolutional neural network (CNN) features, median binary pattern (MBP) with statistical features, and local Gabor XOR pattern (LGXP), are extracted. Lastly, BT detection is carried out by employing Caviar_XM-Net, which is acquired by the assimilation of the Xception model and deep Maxout network (DMN) with the CAViaR approach. Furthermore, the effectiveness of Caviar_XM-Net is examined using the parameters, namely sensitivity, accuracy, specificity, precision, and F1-score, and the corresponding values of 91.59%, 91.36%, 90.83%, 90.99%, and 91.29% are attained. Hence, the Caviar_XM-Net performs better than the traditional methods with high efficiency.

Improving radiology reporting accuracy: use of GPT-4 to reduce errors in reports.

Mayes CJ, Reyes C, Truman ME, Dodoo CA, Adler CR, Banerjee I, Khandelwal A, Alexander LF, Sheedy SP, Thompson CP, Varner JA, Zulfiqar M, Tan N

pubmed logopapersJun 27 2025
Radiology reports are essential for communicating imaging findings to guide diagnosis and treatment. Although most radiology reports are accurate, errors can occur in the final reports due to high workloads, use of dictation software, and human error. Advanced artificial intelligence models, such as GPT-4, show potential as tools to improve report accuracy. This retrospective study evaluated how GPT-4 performed in detecting and correcting errors in finalized radiology reports in real-world settings for abdominopelvic computed tomography (CT) reports. We evaluated finalized CT abdominopelvic reports from a tertiary health system by using GPT-4 with zero-shot learning techniques. Six radiologists each reviewed 100 of their finalized reports (randomly selected), evaluating GPT-4's suggested revisions for agreement, acceptance, and clinical impact. The radiologists' responses were compared by years in practice and sex. GPT-4 identified issues and suggested revisions for 91% of the 600 reports; most revisions addressed grammar (74%). The radiologists agreed with 27% of the revisions and accepted 23%. Most revisions were rated as having no (44%) or low (46%) clinical impact. Potential harm was rare (8%), with only 2 cases of potentially severe harm. Radiologists with less experience (≤ 7 years of practice) were more likely to agree with the revisions suggested by GPT-4 than those with more experience (34% vs. 20%, P = .003) and accepted a greater percentage of the revisions (32% vs. 15%, P = .003). Although GPT-4 showed promise in identifying errors and improving the clarity of finalized radiology reports, most errors were categorized as minor, with no or low clinical impact. Collectively, the radiologists accepted 23% of the suggested revisions in their finalized reports. This study highlights the potential of GPT-4 as a prospective tool for radiology reporting, with further refinement needed for consistent use in clinical practice.

Artificial intelligence in coronary CT angiography: transforming the diagnosis and risk stratification of atherosclerosis.

Irannejad K, Mafi M, Krishnan S, Budoff MJ

pubmed logopapersJun 27 2025
Coronary CT Angiography (CCTA) is essential for assessing atherosclerosis and coronary artery disease, aiding in early detection, risk prediction, and clinical assessment. However, traditional CCTA interpretation is limited by observer variability, time inefficiency, and inconsistent plaque characterization. AI has emerged as a transformative tool, enhancing diagnostic accuracy, workflow efficiency, and risk prediction for major adverse cardiovascular events (MACE). Studies show that AI improves stenosis detection by 27%, inter-reader agreement by 30%, and reduces reporting times by 40%, thereby addressing key limitations of manual interpretation. Integrating AI with multimodal imaging (e.g., FFR-CT, PET-CT) further enhances ischemia detection by 28% and lesion classification by 35%, providing a more comprehensive cardiovascular evaluation. This review synthesizes recent advancements in CCTA-AI automation, risk stratification, and precision diagnostics while critically analyzing data quality, generalizability, ethics, and regulation challenges. Future directions, including real-time AI-assisted triage, cloud-based diagnostics, and AI-driven personalized medicine, are explored for their potential to revolutionize clinical workflows and optimize patient outcomes.

3D Auto-segmentation of pancreas cancer and surrounding anatomical structures for surgical planning.

Rhu J, Oh N, Choi GS, Kim JM, Choi SY, Lee JE, Lee J, Jeong WK, Min JH

pubmed logopapersJun 27 2025
This multicenter study aimed to develop a deep learning-based autosegmentation model for pancreatic cancer and surrounding anatomical structures using computed tomography (CT) to enhance surgical planning. We included patients with pancreatic cancer who underwent pancreatic surgery at three tertiary referral hospitals. A hierarchical Swin Transformer V2 model was implemented to segment the pancreas, pancreatic cancers, and peripancreatic structures from preoperative contrast-enhanced CT scans. Data was divided into training and internal validation sets at a 3:1 ratio (from one tertiary institution), with separately prepared external validation set (from two separate institutions). Segmentation performance was quantitatively assessed using the dice similarity coefficient (DSC) and qualitatively evaluated (complete vs partial vs absent). A total of 275 patients (51.6% male, mean age 65.8 ± 9.5 years) were included (176 training group, 59 internal validation group, and 40 external validation group). No significant differences in baseline characteristics were observed between the groups. The model achieved an overall mean DSC of 75.4 ± 6.0 and 75.6 ± 4.8 in the internal and external validation groups, respectively. It showed high accuracy particularly in the pancreas parenchyma (84.8 ± 5.3 and 86.1 ± 4.1) and lower accuracy in pancreatic cancer (57.0 ± 28.7 and 54.5 ± 23.5). The DSC scores for pancreatic cancer tended to increase with larger tumor sizes. Moreover, the qualitative assessments revealed high accuracy in the superior mesenteric artery (complete segmentation, 87.5%-100%), portal and superior mesenteric vein (97.5%-100%), pancreas parenchyma (83.1%-87.5%), but lower accuracy in cancers (62.7%-65.0%). The deep learning-based autosegmentation model for 3D visualization of pancreatic cancer and peripancreatic structures showed robust performance. Further improvement will enhance many promising applications in clinical research.

<sup>Advanced glaucoma disease segmentation and classification with grey wolf optimized U</sup> <sup>-Net++ and capsule networks</sup>.

Govindharaj I, Deva Priya W, Soujanya KLS, Senthilkumar KP, Shantha Shalini K, Ravichandran S

pubmed logopapersJun 27 2025
Early detection of glaucoma represents a vital factor in securing vision while the disease retains its position as one of the central causes of blindness worldwide. The current glaucoma screening strategies with expert interpretation depend on complex and time-consuming procedures which slow down both diagnosis processes and intervention timing. This research adopts a complex automated glaucoma diagnostic system that combines optimized segmentation solutions together with classification platforms. The proposed segmentation approach implements an enhanced version of U-Net++ using dynamic parameter control provided by GWO to segment optic disc and cup regions in retinal fundus images. Through the implementation of GWO the algorithm uses wolf-pack hunting strategies to adjust parameters dynamically which enables it to locate diverse textural patterns inside images. The system uses a CapsNet capsule network for classification because it maintains visual spatial organization to detect glaucoma-related patterns precisely. The developed system secures an evaluation accuracy of 95.1% in segmentation and classification tasks better than typical approaches. The automated system eliminates and enhances clinical diagnostic speed as well as diagnostic precision. The tool stands out because of its supreme detection accuracy and reliability thus making it an essential clinical early-stage glaucoma diagnostic system and a scalable healthcare deployment solution. To develop an advanced automated glaucoma diagnostic system by integrating an optimized U-Net++ segmentation model with a Capsule Network (CapsNet) classifier, enhanced through Grey Wolf Optimization Algorithm (GWOA), for precise segmentation of optic disc and cup regions and accurate glaucoma classification from retinal fundus images. This study proposes a two-phase computer-assisted diagnosis (CAD) framework. In the segmentation phase, an enhanced U-Net++ model, optimized by GWOA, is employed to accurately delineate the optic disc and cup regions in fundus images. The optimization dynamically tunes hyperparameters based on grey wolf hunting behavior for improved segmentation precision. In the classification phase, a CapsNet architecture is used to maintain spatial hierarchies and effectively classify images as glaucomatous or normal based on segmented outputs. The performance of the proposed model was validated using the ORIGA retinal fundus image dataset, and evaluated against conventional approaches. The proposed GWOA-UNet++ and CapsNet framework achieved a segmentation and classification accuracy of 95.1%, outperforming existing benchmark models such as MTA-CS, ResFPN-Net, DAGCN, MRSNet and AGCT. The model demonstrated robustness against image irregularities, including variations in optic disc size and fundus image quality, and showed superior performance across accuracy, sensitivity, specificity, precision, and F1-score metrics. The developed automated glaucoma detection system exhibits enhanced diagnostic accuracy, efficiency, and reliability, offering significant potential for early-stage glaucoma detection and clinical decision support. Future work will involve large-scale multi-ethnic dataset validation, integration with clinical workflows, and deployment as a mobile or cloud-based screening tool.

Automated Sella-Turcica Annotation and Mesh Alignment of 3D Stereophotographs for Craniosynostosis Patients Using a PCA-FFNN Based Approach.

Bielevelt F, Chargi N, van Aalst J, Nienhuijs M, Maal T, Delye H, de Jong G

pubmed logopapersJun 27 2025
Craniosynostosis, characterized by the premature fusion of cranial sutures, can lead to significant neurological and developmental complications, necessitating early diagnosis and precise treatment. Traditional cranial morphologic assessment has relied on CT scans, which expose infants to ionizing radiation. Recently, 3D stereophotogrammetry has emerged as a noninvasive alternative, but accurately aligning 3D photographs within standardized reference frames, such as the Sella-turcica-Nasion (S-N) frame, remains a challenge. This study proposes a novel method for predicting the Sella turcica (ST) coordinate from 3D cranial surface models using Principal Component Analysis (PCA) combined with a Feedforward Neural Network (FFNN). The accuracy of this method is compared with the conventional Computed Cranial Focal Point (CCFP) method, which has limitations, especially in cases of asymmetric cranial deformations like plagiocephaly. A data set of 153 CT scans, including 68 craniosynostosis subjects, was used to train and test the PCA-FFNN model. The results demonstrate that the PCA-FFNN approach outperforms CCFP, achieving significantly lower deviations in ST coordinate predictions (3.61 vs. 8.38 mm, P<0.001), particularly along the y-axes and z-axes. In addition, mesh realignment within the S-N reference frame showed improved accuracy with the PCA-FFNN method, evidenced by lower mean deviations and reduced dispersion in distance maps. These findings highlight the potential of the PCA-FFNN approach to provide a more reliable, noninvasive solution for cranial assessment, improving craniosynostosis follow-up and enhancing clinical outcomes.

Early prediction of adverse outcomes in liver cirrhosis using a CT-based multimodal deep learning model.

Xie N, Liang Y, Luo Z, Hu J, Ge R, Wan X, Wang C, Zou G, Guo F, Jiang Y

pubmed logopapersJun 27 2025
Early-stage cirrhosis frequently presents without symptoms, making timely identification of high-risk patients challenging. We aimed to develop a deep learning-based triple-modal fusion liver cirrhosis network (TMF-LCNet) for the prediction of adverse outcomes, offering a promising tool to enhance early risk assessment and improve clinical management strategies. This retrospective study included 243 patients with early-stage cirrhosis across two centers. Adverse outcomes were defined as the development of severe complications like ascites, hepatic encephalopathy and variceal bleeding. TMF-LCNet was developed by integrating three types of data: non-contrast abdominal CT images, radiomic features extracted from liver and spleen, and clinical text detailing laboratory parameters and adipose tissue composition measurements. TMF-LCNet was compared with conventional methods on the same dataset, and single-modality versions of TMF-LCNet were tested to determine the impact of each data type. Model effectiveness was measured using the area under the receiver operating characteristics curve (AUC) for discrimination, calibration curves for model fit, and decision curve analysis (DCA) for clinical utility. TMF-LCNet demonstrated superior predictive performance compared to conventional image-based, radiomics-based, and multimodal methods, achieving an AUC of 0.797 in the training cohort (n = 184) and 0.747 in the external test cohort (n = 59). Only TMF-LCNet exhibited robust model calibration in both cohorts. Of the three data types, the imaging modality contributed the most, as the image-only version of TMF-LCNet achieved performance closest to the complete version (AUC = 0.723 and 0.716, respectively; p > 0.05). This was followed by the text modality, with radiomics contributing the least, a pattern consistent with the clinical utility trends observed in DCA. TMF-LCNet represents an accurate and robust tool for predicting adverse outcomes in early-stage cirrhosis by integrating multiple data types. It holds potential for early identification of high-risk patients, guiding timely interventions, and ultimately improving patient prognosis.

Practical applications of AI in body imaging.

Mervak BM, Fried JG, Neshewat J, Wasnik AP

pubmed logopapersJun 27 2025
Artificial intelligence (AI) algorithms and deep learning continue to change the landscape of radiology. New algorithms promise to enhance diagnostic accuracy, improve workflow efficiency, and automate repetitive tasks. This article provides a narrative review of the FDA-cleared AI algorithms which are commercially available in the United States as of late 2024 and targeted toward assessment of abdominopelvic organs and related diseases, evaluates potential advantages of using AI, and suggests future directions for the field.
Page 195 of 3993982 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.