Sort by:
Page 19 of 54537 results

Multi-modal MRI cascaded incremental reconstruction with coarse-to-fine spatial registration.

Wang Y, Sun Y, Liu J, Jing L, Liu Q

pubmed logopapersAug 5 2025
Magnetic resonance imaging (MRI) typically utilizes multiple contrasts to assess different tissue features, but prolonged scanning increases the risk of motion artifacts. Compressive sensing MRI (CS-MRI) employs computational reconstruction algorithm to accelerate imaging. Full-sampled auxiliary MR images can effectively assist in the reconstruction of under-sampled target MR images. However, due to spatial offset and differences in imaging parameters, how to achieve cross-modal fusion is a key issue. In order to cope with this issue, we propose an end-to-end network integrating spatial registration and cascaded incremental reconstruction for multi-modal CS-MRI. Specifically, the proposed network comprises two stages: a coarse-to-fine spatial registration sub-network and a cascaded incremental reconstruction sub-network. The registration sub-network iteratively predicts deformation flow fields between under-sampled target images and full-sampled auxiliary images, gradually aligning them to mitigate spatial offsets. The cascaded incremental reconstruction sub-network adopts a new separated criss-cross window Transformer as the basic component and deploys them in dual-path to fuse inter-modal and intra-modal features from the registered auxiliary images and under-sampled target images. Through cascade learning, we can recover incremental details from fused features and continuously refine the target images. We validate our model using the IXI brain dataset, and the experimental results demonstrate that, compared to existing methods, our network exhibits superior performance.

Deep Learning Reconstruction for T2 Weighted Turbo-Spin-Echo Imaging of the Pelvis: Prospective Comparison With Standard T2-Weighted TSE Imaging With Respect to Image Quality, Lesion Depiction, and Acquisition Time.

Sussman MS, Cui L, Tan SBM, Prasla S, Wah-Kahn T, Nickel D, Jhaveri KS

pubmed logopapersAug 4 2025
In pelvic MRI, Turbo Spin Echo (TSE) pulse sequences are used for T2-weighted imaging. However, its lengthy acquisition time increases the potential for artifacts. Deep learning (DL) reconstruction achieves reduced scan times without the degradation in image quality associated with other accelerated techniques. Unfortunately, a comprehensive assessment of DL-reconstruction in pelvic MRI has not been performed. The objective of this prospective study was to compare the performance of DL-TSE and conventional TSE pulse sequences in a broad spectrum of pelvic MRI indications. Fifty-five subjects (33 females and 22 males) were scanned at 3 T using DL-TSE and conventional TSE sequences in axial and/or oblique acquisition planes. Two radiologists independently assessed image quality in 6 categories: edge definition, vessel margin sharpness, T2 Contrast Dynamic Range, artifacts, overall image quality, and lesion features. The contrast ratio was calculated for quantitative assessment. A two-tailed sign test was used for assessment. The 2 readers found DL-TSE to deliver equal or superior image quality than conventional TSE in most cases. There were only 3 instances out of 24 where conventional TSE was scored as providing better image quality. Readers agreed on DL-TSE superiority/inferiority/equivalence in 67% of categories in the axial plane and 75% in the oblique plane. DL-TSE also demonstrated a better contrast ratio in 75% of cases. DL-TSE reduced scan time by approximately 50%. DL-accelerated TSE sequences generally provide equal or better image quality in pelvic MRI than standard TSE with significantly reduced acquisition times.

Joint Lossless Compression and Steganography for Medical Images via Large Language Models

Pengcheng Zheng, Xiaorong Pu, Kecheng Chen, Jiaxin Huang, Meng Yang, Bai Feng, Yazhou Ren, Jianan Jiang

arxiv logopreprintAug 3 2025
Recently, large language models (LLMs) have driven promis ing progress in lossless image compression. However, di rectly adopting existing paradigms for medical images suf fers from an unsatisfactory trade-off between compression performance and efficiency. Moreover, existing LLM-based compressors often overlook the security of the compres sion process, which is critical in modern medical scenarios. To this end, we propose a novel joint lossless compression and steganography framework. Inspired by bit plane slicing (BPS), we find it feasible to securely embed privacy messages into medical images in an invisible manner. Based on this in sight, an adaptive modalities decomposition strategy is first devised to partition the entire image into two segments, pro viding global and local modalities for subsequent dual-path lossless compression. During this dual-path stage, we inno vatively propose a segmented message steganography algo rithm within the local modality path to ensure the security of the compression process. Coupled with the proposed anatom ical priors-based low-rank adaptation (A-LoRA) fine-tuning strategy, extensive experimental results demonstrate the su periority of our proposed method in terms of compression ra tios, efficiency, and security. The source code will be made publicly available.

MR-AIV reveals <i>in vivo</i> brain-wide fluid flow with physics-informed AI.

Toscano JD, Guo Y, Wang Z, Vaezi M, Mori Y, Karniadakis GE, Boster KAS, Kelley DH

pubmed logopapersAug 1 2025
The circulation of cerebrospinal and interstitial fluid plays a vital role in clearing metabolic waste from the brain, and its disruption has been linked to neurological disorders. However, directly measuring brain-wide fluid transport-especially in the deep brain-has remained elusive. Here, we introduce magnetic resonance artificial intelligence velocimetry (MR-AIV), a framework featuring a specialized physics-informed architecture and optimization method that reconstructs three-dimensional fluid velocity fields from dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI). MR-AIV unveils brain-wide velocity maps while providing estimates of tissue permeability and pressure fields-quantities inaccessible to other methods. Applied to the brain, MR-AIV reveals a functional landscape of interstitial and perivascular flow, quantitatively distinguishing slow diffusion-driven transport (∼ 0.1 µm/s) from rapid advective flow (∼ 3 µm/s). This approach enables new investigations into brain clearance mechanisms and fluid dynamics in health and disease, with broad potential applications to other porous media systems, from geophysics to tissue mechanics.

FOCUS-DWI improves prostate cancer detection through deep learning reconstruction with IQMR technology.

Zhao Y, Xie XL, Zhu X, Huang WN, Zhou CW, Ren KX, Zhai RY, Wang W, Wang JW

pubmed logopapersAug 1 2025
This study explored the effects of using Intelligent Quick Magnetic Resonance (IQMR) image post-processing on image quality in Field of View Optimized and Constrained Single-Shot Diffusion-Weighted Imaging (FOCUS-DWI) sequences for prostate cancer detection, and assessed its efficacy in distinguishing malignant from benign lesions. The clinical data and MRI images from 62 patients with prostate masses (31 benign and 31 malignant) were retrospectively analyzed. Axial T2-weighted imaging with fat saturation (T2WI-FS) and FOCUS-DWI sequences were acquired, and the FOCUS-DWI images were processed using the IQMR post-processing system to generate IQMR-FOCUS-DWI images. Two independent radiologists undertook subjective scoring, grading using the Prostate Imaging Reporting and Data System (PI-RADS), diagnosis of benign and malignant lesions, and diagnostic confidence scoring for images from the FOCUS-DWI and IQMR-FOCUS-DWI sequences. Additionally, quantitative analyses, specifically, the peak signal-to-noise ratio (PSNR) and structural similarity index (SSIM), were conducted using T2WI-FS as the reference standard. The apparent diffusion coefficients (ADCs) of malignant and benign lesions were compared between the two imaging sequences. Spearman correlation coefficients were calculated to evaluate the associations between diagnostic confidence scores and diagnostic accuracy rates of the two sequence groups, as well as between the ADC values of malignant lesions and Gleason grading in the two sequence groups. Receiver operating characteristic (ROC) curves were utilized to assess the efficacy of ADC in distinguishing lesions. The qualitative analysis revealed that IQMR-FOCUS-DWI images showed significantly better noise suppression, reduced geometric distortion, and enhanced overall quality relative to the FOCUS-DWI images (P < 0.001). There was no significant difference in the PI-RADS scores between IQMR-FOCUS-DWI and FOCUS-DWI images (P = 0.0875), while the diagnostic confidence scores of IQMR-FOCUS-DWI sequences were markedly higher than those of FOCUS-DWI sequences (P = 0.0002). The diagnostic results of the FOCUS-DWI sequences for benign and malignant prostate lesions were consistent with those of the pathological results (P < 0.05), as were those of the IQMR-FOCUS-DWI sequences (P < 0.05). The quantitative analysis indicated that the PSNR, SSIM, and ADC values were markedly greater in IQMR-FOCUS-DWI images relative to FOCUS-DWI images (P < 0.01). In both imaging sequences, benign lesions exhibited ADC values markedly greater than those of malignant lesions (P < 0.001). The diagnostic confidence scores of both groups of sequences were significantly positively correlated with the diagnostic accuracy rate. In malignant lesions, the ADC values of the FOCUS-DWI sequences showed moderate negative correlations with the Gleason grading, while the ADC values of the IQMR-FOCUS-DWI sequences were strongly negatively associated with the Gleason grading. ROC curves indicated the superior diagnostic performance of IQMR-FOCUS-DWI (AUC = 0.941) compared to FOCUS-DWI (AUC = 0.832) for differentiating prostate lesions (P = 0.0487). IQMR-FOCUS-DWI significantly enhances image quality and improves diagnostic accuracy for benign and malignant prostate lesions compared to conventional FOCUS-DWI.

Optimization strategy for fat-suppressed T2-weighted images in liver imaging: The combined application of AI-assisted compressed sensing and respiratory triggering.

Feng M, Li S, Song X, Mao W, Liu Y, Yuan Z

pubmed logopapersAug 1 2025
This study aimed to optimize the imaging time and image quality of T2WI-FS through the integration of Artificial Intelligence-Assisted Compressed Sensing (ACS) and respiratory triggering (RT). A prospective cohort study was conducted on one hundred thirty-four patients (99 males, 35 females; average age: 57.93 ± 9.40 years) undergoing liver MRI between March and July 2024. All patients were scanned using both breath-hold ACS-assisted T2WI (BH-ACS-T2WI) and respiratory-triggered ACS-assisted T2WI (RT-ACS-T2WI) sequences. Two experienced radiologists retrospectively analyzed regions of interest (ROIs), recorded primary lesions, and assessed key metrics including signal intensity (SI), standard deviation (SD), signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR), motion artifacts, hepatic vessel clarity, liver edge sharpness, lesion conspicuity, and overall image quality. Statistical comparisons were conducted using Mann-Whitney U test, Wilcoxon signed-rank test and intraclass correlation coefficient (ICC). Compared to BH-ACS-T2WI, RT-ACS-T2WI significantly reduced average imaging time from 38 s to 22.91 ± 3.36 s, achieving a 40 % reduction in scan duration. Additionally, RT-ACS-T2WI demonstrated superior performance across multiple parameters, including SI, SD, SNR, CNR, motion artifact reduction, hepatic vessel clarity, liver edge sharpness, lesion conspicuity (≤5 mm), and overall image quality (P < 0.05). Notably, the lesion detection rate was slightly higher with RT-ACS-T2WI (94 %) compared to BH-ACS-T2WI (90 %). The RT-ACS-T2WI sequence not only enhanced image quality but also reduced imaging time to approximately 23 s, making it particularly beneficial for patients unable to perform prolonged breath-holding maneuvers. This approach represents a promising advancement in optimizing liver MRI protocols.

Deep Learning Reconstruction Combined With Conventional Acceleration Improves Image Quality of 3 T Brain MRI and Does Not Impact Quantitative Diffusion Metrics.

Wilpert C, Russe MF, Weiss J, Voss C, Rau S, Strecker R, Reisert M, Bedin R, Urbach H, Zaitsev M, Bamberg F, Rau A

pubmed logopapersAug 1 2025
Deep learning reconstruction of magnetic resonance imaging (MRI) allows to either improve image quality of accelerated sequences or to generate high-resolution data. We evaluated the interaction of conventional acceleration and Deep Resolve Boost (DRB)-based reconstruction techniques of a single-shot echo-planar imaging (ssEPI) diffusion-weighted imaging (DWI) on image quality features in cerebral 3 T brain MRI and compared it with a state-of-the-art DWI sequence. In this prospective study, 24 patients received a standard of care ssEPI DWI and 5 additional adapted ssEPI DWI sequences, 3 of those with DRB reconstruction. Qualitative analysis encompassed rating of image quality, noise, sharpness, and artifacts. Quantitative analysis compared apparent diffusion coefficient (ADC) values region-wise between the different DWI sequences. Intraclass correlations, paired sampled t test, Wilcoxon signed rank test, and weighted Cohen κ were used. Compared with the reference standard, the acquisition time was significantly improved in accelerated DWI from 75 seconds up to 50% (39 seconds; P < 0.001). All tested DRB-reconstructed sequences showed significantly improved image quality, sharpness, and reduced noise ( P < 0.001). Highest image quality was observed for the combination of conventional acceleration and DL reconstruction. In singular slices, more artifacts were observed for DRB-reconstructed sequences ( P < 0.001). While in general high consistency was found between ADC values, increasing differences in ADC values were noted with increasing acceleration and application of DRB. Falsely pathological ADCs were rarely observed near frontal poles and optic chiasm attributable to susceptibility-related artifacts due to adjacent sinuses. In this comparative study, we found that the combination of conventional acceleration and DRB reconstruction improves image quality and enables faster acquisition of ssEPI DWI. Nevertheless, a tradeoff between increased acceleration with risk of stronger artifacts and high-resolution with longer acquisition time needs to be considered, especially for application in cerebral MRI.

DiSC-Med: Diffusion-based Semantic Communications for Robust Medical Image Transmission

Fupei Guo, Hao Zheng, Xiang Zhang, Li Chen, Yue Wang, Songyang Zhang

arxiv logopreprintJul 31 2025
The rapid development of artificial intelligence has driven smart health with next-generation wireless communication technologies, stimulating exciting applications in remote diagnosis and intervention. To enable a timely and effective response for remote healthcare, efficient transmission of medical data through noisy channels with limited bandwidth emerges as a critical challenge. In this work, we propose a novel diffusion-based semantic communication framework, namely DiSC-Med, for the medical image transmission, where medical-enhanced compression and denoising blocks are developed for bandwidth efficiency and robustness, respectively. Unlike conventional pixel-wise communication framework, our proposed DiSC-Med is able to capture the key semantic information and achieve superior reconstruction performance with ultra-high bandwidth efficiency against noisy channels. Extensive experiments on real-world medical datasets validate the effectiveness of our framework, demonstrating its potential for robust and efficient telehealth applications.

Utility of Thin-slice Fat-suppressed Single-shot T2-weighted MR Imaging with Deep Learning Image Reconstruction as a Protocol for Evaluating the Pancreas.

Shimada R, Sofue K, Ueno Y, Wakayama T, Yamaguchi T, Ueshima E, Kusaka A, Hori M, Murakami T

pubmed logopapersJul 31 2025
To compare the utility of thin-slice fat-suppressed single-shot T2-weighted imaging (T2WI) with deep learning image reconstruction (DLIR) and conventional fast spin-echo T2WI with DLIR for evaluating pancreatic protocol. This retrospective study included 42 patients (mean age, 70.2 years) with pancreatic cancer who underwent gadoxetic acid-enhanced MRI. Three fat-suppressed T2WI, including conventional fast-spin echo with 6 mm thickness (FSE 6 mm), single-shot fast-spin echo with 6 mm and 3 mm thickness (SSFSE 6 mm and SSFSE 3 mm), were acquired for each patient. For quantitative analysis, the SNRs of the upper abdominal organs were calculated between images with and without DLIR. The pancreas-to-lesion contrast on DLIR images was also calculated. For qualitative analysis, two abdominal radiologists independently scored the image quality on a 5-point scale in the FSE 6 mm, SSFSE 6 mm, and SSFSE 3 mm with DLIR. The SNRs significantly improved among the three T2-weighted images with DLIR compared to those without DLIR in all patients (P < 0.001). The pancreas-to-lesion contrast of SSFSE 3 mm was higher than those of the FSE 6 mm (P < 0.001) and tended to be higher than SSFSE 6 mm (P = 0.07). SSFSE 3 mm had the highest image qualities regarding pancreas edge sharpness, pancreatic duct clarity, and overall image quality, followed by SSFSE 6 mm and FSE 6 mm (P < 0.0001). SSFSE 3 mm with DLIR demonstrated significant improvements in SNRs of the pancreas, pancreas-to-lesion contrast, and image quality more efficiently than did SSFSE 6 mm and FSE 6 mm. Thin-slice fat-suppressed single-shot T2WI with DLIR can be easily implemented for pancreatic MR protocol.

A Trust-Guided Approach to MR Image Reconstruction with Side Information.

Atalik A, Chopra S, Sodickson DK

pubmed logopapersJul 31 2025
Reducing MRI scan times can improve patient care and lower healthcare costs. Many acceleration methods are designed to reconstruct diagnostic-quality images from sparse k-space data, via an ill-posed or ill-conditioned linear inverse problem (LIP). To address the resulting ambiguities, it is crucial to incorporate prior knowledge into the optimization problem, e.g., in the form of regularization. Another form of prior knowledge less commonly used in medical imaging is the readily available auxiliary data (a.k.a. side information) obtained from sources other than the current acquisition. In this paper, we present the Trust-Guided Variational Network (TGVN), an end-to-end deep learning framework that effectively and reliably integrates side information into LIPs. We demonstrate its effectiveness in multi-coil, multi-contrast MRI reconstruction, where incomplete or low-SNR measurements from one contrast are used as side information to reconstruct high-quality images of another contrast from heavily under-sampled data. TGVN is robust across different contrasts, anatomies, and field strengths. Compared to baselines utilizing side information, TGVN achieves superior image quality while preserving subtle pathological features even at challenging acceleration levels, drastically speeding up acquisition while minimizing hallucinations. Source code and dataset splits are available on github.com/sodicksonlab/TGVN.
Page 19 of 54537 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.