Sort by:
Page 19 of 99982 results

Mask-Guided and Fidelity-Constrained Deep Learning Model for Accurate Translation of Brain CT Images to Diffusion MRI Images in Acute Stroke Patients.

Khalil MA, Bajger M, Skeats A, Delnooz C, Dwyer A, Lee G

pubmed logopapersSep 2 2025
The early and precise diagnosis of stroke plays an important role in its treatment planning. Computed Tomography (CT) is utilised as a first diagnostic tool for quick diagnosis and to rule out haemorrhage. Diffusion Magnetic Resonance Imaging (MRI) provides superior sensitivity in comparison to CT for detecting early acute ischaemia and small lesions. However, the long scan time and limited availability of MRI make it not feasible for emergency settings. To deal with this problem, this study presents a brain mask-guided and fidelity-constrained cycle-consistent generative adversarial network for translating CT images into diffusion MRI images for stroke diagnosis. A brain mask is concatenated with the input CT image and given as input to the generator to encourage more focus on the critical foreground areas. A fidelity-constrained loss is utilised to preserve details for better translation results. A publicly available dataset, A Paired CT-MRI Dataset for Ischemic Stroke Segmentation (APIS) is utilised to train and test the models. The proposed method yields MSE 197.45 [95% CI: 180.80, 214.10], PSNR 25.50 [95% CI: 25.10, 25.92], and SSIM 88.50 [95% CI: 87.50, 89.50] on a testing set. The proposed method significantly improves techniques based on UNet, cycle-consistent generative adversarial networks (CycleGAN) and Attention generative adversarial networks (GAN). Furthermore, an ablation study was performed, which demonstrates the effectiveness of incorporating fidelity-constrained loss and brain mask information as a soft guide in translating CT images into diffusion MRI images. The experimental results demonstrate that the proposed approach has the potential to support faster and precise diagnosis of stroke.

Evaluation efficacy and accuracy of a real-time computer-aided polyp detection system during colonoscopy: a prospective, multicentric, randomized, parallel-controlled study trial.

Xu X, Ba L, Lin L, Song Y, Zhao C, Yao S, Cao H, Chen X, Mu J, Yang L, Feng Y, Wang Y, Wang B, Zheng Z

pubmed logopapersSep 2 2025
Colorectal cancer (CRC) ranks as the second deadliest cancer globally, impacting patients' quality of life. Colonoscopy is the primary screening method for detecting adenomas and polyps, crucial for reducing long-term CRC risk, but it misses about 30% of cases. Efforts to improve detection rates include using AI to enhance colonoscopy. This study assesses the effectiveness and accuracy of a real-time AI-assisted polyp detection system during colonoscopy. The study included 390 patients aged 40 to 75 undergoing colonoscopies for either colorectal cancer screening (risk score ≥ 4) or clinical diagnosis. Participants were randomly assigned to an experimental group using software-assisted diagnosis or a control group with physician diagnosis. The software, a medical image processing tool with B/S and MVC architecture, operates on Windows 10 (64-bit) and supports real-time image handling and lesion identification via HDMI, SDI, AV, and DVI outputs from endoscopy devices. Expert evaluations of retrospective video lesions served as the gold standard. Efficacy was assessed by polyp per colonoscopy (PPC), adenoma per colonoscopy (APC), adenoma detection rate (ADR), and polyp detection rate (PDR), while accuracy was measured using sensitivity and specificity against the gold standard. In this multicenter, randomized controlled trial, computer-aided detection (CADe) significantly improved polyp detection rates (PDR), achieving 67.18% in the CADe group versus 56.92% in the control group. The CADe group identified more polyps, especially those 5 mm or smaller (61.03% vs. 56.92%). In addition, the CADe group demonstrated higher specificity (98.44%) and sensitivity (95.19%) in the FAS dataset, and improved sensitivity (95.82% vs. 77.53%) in the PPS dataset, with both groups maintaining 100% specificity. These results suggest that the AI-assisted system enhances PDR accuracy. This real-time computer-aided polyp detection system enhances efficacy by boosting adenoma and polyp detection rates, while also achieving high accuracy with excellent sensitivity and specificity.

From Noisy Labels to Intrinsic Structure: A Geometric-Structural Dual-Guided Framework for Noise-Robust Medical Image Segmentation

Tao Wang, Zhenxuan Zhang, Yuanbo Zhou, Xinlin Zhang, Yuanbin Chen, Tao Tan, Guang Yang, Tong Tong

arxiv logopreprintSep 2 2025
The effectiveness of convolutional neural networks in medical image segmentation relies on large-scale, high-quality annotations, which are costly and time-consuming to obtain. Even expert-labeled datasets inevitably contain noise arising from subjectivity and coarse delineations, which disrupt feature learning and adversely impact model performance. To address these challenges, this study propose a Geometric-Structural Dual-Guided Network (GSD-Net), which integrates geometric and structural cues to improve robustness against noisy annotations. It incorporates a Geometric Distance-Aware module that dynamically adjusts pixel-level weights using geometric features, thereby strengthening supervision in reliable regions while suppressing noise. A Structure-Guided Label Refinement module further refines labels with structural priors, and a Knowledge Transfer module enriches supervision and improves sensitivity to local details. To comprehensively assess its effectiveness, we evaluated GSD-Net on six publicly available datasets: four containing three types of simulated label noise, and two with multi-expert annotations that reflect real-world subjectivity and labeling inconsistencies. Experimental results demonstrate that GSD-Net achieves state-of-the-art performance under noisy annotations, achieving improvements of 2.52% on Kvasir, 22.76% on Shenzhen, 8.87% on BU-SUC, and 4.59% on BraTS2020 under SR simulated noise. The codes of this study are available at https://github.com/ortonwang/GSD-Net.

Anisotropic Fourier Features for Positional Encoding in Medical Imaging

Nabil Jabareen, Dongsheng Yuan, Dingming Liu, Foo-Wei Ten, Sören Lukassen

arxiv logopreprintSep 2 2025
The adoption of Transformer-based architectures in the medical domain is growing rapidly. In medical imaging, the analysis of complex shapes - such as organs, tissues, or other anatomical structures - combined with the often anisotropic nature of high-dimensional images complicates these adaptations. In this study, we critically examine the role of Positional Encodings (PEs), arguing that commonly used approaches may be suboptimal for the specific challenges of medical imaging. Sinusoidal Positional Encodings (SPEs) have proven effective in vision tasks, but they struggle to preserve Euclidean distances in higher-dimensional spaces. Isotropic Fourier Feature Positional Encodings (IFPEs) have been proposed to better preserve Euclidean distances, but they lack the ability to account for anisotropy in images. To address these limitations, we propose Anisotropic Fourier Feature Positional Encoding (AFPE), a generalization of IFPE that incorporates anisotropic, class-specific, and domain-specific spatial dependencies. We systematically benchmark AFPE against commonly used PEs on multi-label classification in chest X-rays, organ classification in CT images, and ejection fraction regression in echocardiography. Our results demonstrate that choosing the correct PE can significantly improve model performance. We show that the optimal PE depends on the shape of the structure of interest and the anisotropy of the data. Finally, our proposed AFPE significantly outperforms state-of-the-art PEs in all tested anisotropic settings. We conclude that, in anisotropic medical images and videos, it is of paramount importance to choose an anisotropic PE that fits the data and the shape of interest.

MedDINOv3: How to adapt vision foundation models for medical image segmentation?

Yuheng Li, Yizhou Wu, Yuxiang Lai, Mingzhe Hu, Xiaofeng Yang

arxiv logopreprintSep 2 2025
Accurate segmentation of organs and tumors in CT and MRI scans is essential for diagnosis, treatment planning, and disease monitoring. While deep learning has advanced automated segmentation, most models remain task-specific, lacking generalizability across modalities and institutions. Vision foundation models (FMs) pretrained on billion-scale natural images offer powerful and transferable representations. However, adapting them to medical imaging faces two key challenges: (1) the ViT backbone of most foundation models still underperform specialized CNNs on medical image segmentation, and (2) the large domain gap between natural and medical images limits transferability. We introduce MedDINOv3, a simple and effective framework for adapting DINOv3 to medical segmentation. We first revisit plain ViTs and design a simple and effective architecture with multi-scale token aggregation. Then, we perform domain-adaptive pretraining on CT-3M, a curated collection of 3.87M axial CT slices, using a multi-stage DINOv3 recipe to learn robust dense features. MedDINOv3 matches or exceeds state-of-the-art performance across four segmentation benchmarks, demonstrating the potential of vision foundation models as unified backbones for medical image segmentation. The code is available at https://github.com/ricklisz/MedDINOv3.

Decoding Fibrosis: Transcriptomic and Clinical Insights via AI-Derived Collagen Deposition Phenotypes in MASLD

Wojciechowska, M. K., Thing, M., Hu, Y., Mazzoni, G., Harder, L. M., Werge, M. P., Kimer, N., Das, V., Moreno Martinez, J., Prada-Medina, C. A., Vyberg, M., Goldin, R., Serizawa, R., Tomlinson, J., Douglas Gaalsgard, E., Woodcock, D. J., Hvid, H., Pfister, D. R., Jurtz, V. I., Gluud, L.-L., Rittscher, J.

medrxiv logopreprintSep 2 2025
Histological assessment is foundational to multi-omics studies of liver disease, yet conventional fibrosis staging lacks resolution, and quantitative metrics like collagen proportionate area (CPA) fail to capture tissue architecture. While recent AI-driven approaches offer improved precision, they are proprietary and not accessible to academic research. Here, we present a novel, interpretable AI-based framework for characterising liver fibrosis from picrosirius red (PSR)-stained slides. By identifying distinct data-driven collagen deposition phenotypes (CDPs) which capture distinct morphologies, our method substantially improves the sensitivity and specificity of downstream transcriptomic and proteomic analyses compared to CPA and traditional fibrosis scores. Pathway analysis reveals that CDPs 4 and 5 are associated with active extracellular matrix remodelling, while phenotype correlates highlight links to liver functional status. Importantly, we demonstrate that selected CDPs can predict clinical outcomes with similar accuracy to established fibrosis metrics. All models and tools are made freely available to support transparent and reproducible multi-omics pathology research. HighlightsO_LIWe present a set of data-driven collagen deposition phenotypes for analysing PSR-stained liver biopsies, offering a spatially informed alternative to conventional fibrosis staging and CPA available as open-source code. C_LIO_LIThe identified collagen deposition phenotypes enhance transcriptomic and proteomic signal detection, revealing active ECM remodelling and distinct functional tissue states. C_LIO_LISelected phenotypes predict clinical outcomes with performance comparable to fibrosis stage and CPA, highlighting their potential as candidate quantitative indicators of fibrosis severity. C_LI O_FIG O_LINKSMALLFIG WIDTH=200 HEIGHT=98 SRC="FIGDIR/small/25334719v1_ufig1.gif" ALT="Figure 1"> View larger version (22K): [email protected]@1793532org.highwire.dtl.DTLVardef@93a0d8org.highwire.dtl.DTLVardef@24d289_HPS_FORMAT_FIGEXP M_FIG C_FIG

Challenges in diagnosis of sarcoidosis.

Bączek K, Piotrowski WJ, Bonella F

pubmed logopapersSep 1 2025
Diagnosing sarcoidosis remains challenging. Histology findings and a variable clinical presentation can mimic other infectious, malignant, and autoimmune diseases. This review synthesizes current evidence on histopathology, sampling techniques, imaging modalities, and biomarkers and explores how emerging 'omics' and artificial intelligence tools may sharpen diagnostic accuracy. Within the typical granulomatous lesions, limited or 'burned-out' necrosis is an ancillary finding, which can be present in up to one-third of sarcoid biopsies, and demands a careful differential diagnostic work-up. Endobronchial ultrasound-guided transbronchial needle aspiration of lymph nodes has replaced mediastinoscopy as first-line sampling tool, while cryobiopsy is still under validation. Volumetric PET metrics such as total lung glycolysis and somatostatin-receptor tracers refine activity assessment; combined FDG PET/MRI improves detection of occult cardiac disease. Advanced bronchoalveolar lavage (BAL) immunophenotyping via flow cytometry and serum, BAL, and genetic biomarkers show to correlate with inflammatory burden but have low diagnostic value. Multi-omics signatures and Positron Emission Tomography with Computer Tomography radiomics, supported by deep-learning algorithms, show promising results for noninvasive diagnostic confirmation, phenotyping, and disease monitoring. No single test is conclusive for diagnosing sarcoidosis. An integrated, multidisciplinary strategy is needed. Large, multicenter, and multiethnic studies are essential to translate and validate data from emerging AI tools and -omics research into clinical routine.

FocalTransNet: A Hybrid Focal-Enhanced Transformer Network for Medical Image Segmentation.

Liao M, Yang R, Zhao Y, Liang W, Yuan J

pubmed logopapersSep 1 2025
CNNs have demonstrated superior performance in medical image segmentation. To overcome the limitation of only using local receptive field, previous work has attempted to integrate Transformers into convolutional network components such as encoders, decoders, or skip connections. However, these methods can only establish long-distance dependencies for some specific patterns and usually neglect the loss of fine-grained details during downsampling in multi-scale feature extraction. To address the issues, we present a novel hybrid Transformer network called FocalTransNet. specifically, we construct a focal-enhanced (FE) Transformer module by introducing dense cross-connections into a CNN-Transformer dual-path structure and deploy the FE Transformer throughout the entire encoder. Different from existing hybrid networks that employ embedding or stacking strategies, the proposed model allows for a comprehensive extraction and deep fusion of both local and global features at different scales. Besides, we propose a symmetric patch merging (SPM) module for downsampling, which can retain the fine-grained details by stablishing a specific information compensation mechanism. We evaluated the proposed method on four different medical image segmentation benchmarks. The proposed method outperforms previous state-of-the-art convolutional networks, Transformers, and hybrid networks. The code for FocalTransNet is publicly available at https://github.com/nemanjajoe/FocalTransNet.

Pulmonary Biomechanics in COPD: Imaging Techniques and Clinical Applications.

Aguilera SM, Chaudhary MFA, Gerard SE, Reinhardt JM, Bodduluri S

pubmed logopapersSep 1 2025
The respiratory system depends on complex biomechanical processes to enable gas exchange. The mechanical properties of the lung parenchyma, airways, vasculature, and surrounding structures play an essential role in overall ventilation efficacy. These complex biomechanical processes however are significantly altered in chronic obstructive pulmonary disease (COPD) due to emphysematous destruction of lung parenchyma, chronic airway inflammation, and small airway obstruction. Recent advancements computed tomography (CT) and magnetic resonance imaging (MRI) acquisition techniques, combined with sophisticated image post-processing algorithms and deep neural network integration, have enabled comprehensive quantitative assessment of lung structure, tissue deformation, and lung function at the tissue level. These methods have led to better phenotyping, therapeutic strategies and refined our understanding of pathological processes that compromise pulmonary function in COPD. In this review, we discuss recent developments in imaging and image processing methods for studying pulmonary biomechanics with specific focus on clinical applications for chronic obstructive pulmonary disease (COPD) including the assessment of regional ventilation, planning of endobronchial valve treatment, prediction of disease onset and progression, sizing of lungs for transplantation, and guiding mechanical ventilation. These advanced image-based biomechanical measurements when combined with clinical expertise play a critical role in disease management and personalized therapeutic interventions for patients with COPD.

Explainable self-supervised learning for medical image diagnosis based on DINO V2 model and semantic search.

Hussien A, Elkhateb A, Saeed M, Elsabawy NM, Elnakeeb AE, Elrashidy N

pubmed logopapersSep 1 2025
Medical images have become indispensable for decision-making and significantly affect treatment planning. However, increasing medical imaging has widened the gap between medical images and available radiologists, leading to delays and diagnosis errors. Recent studies highlight the potential of deep learning (DL) in medical image diagnosis. However, their reliance on labelled data limits their applicability in various clinical settings. As a result, recent studies explore the role of self-supervised learning to overcome these challenges. Our study aims to address these challenges by examining the performance of self-supervised learning (SSL) in diverse medical image datasets and comparing it with traditional pre-trained supervised learning models. Unlike prior SSL methods that focus solely on classification, our framework leverages DINOv2's embeddings to enable semantic search in medical databases (via Qdrant), allowing clinicians to retrieve similar cases efficiently. This addresses a critical gap in clinical workflows where rapid case The results affirmed SSL's ability, especially DINO v2, to overcome the challenge associated with labelling data and provide an accurate diagnosis superior to traditional SL. DINO V2 provides 100%, 99%, 99%, 100 and 95% for classification accuracy of Lung cancer, brain tumour, leukaemia and Eye Retina Disease datasets, respectively. While existing SSL models (e.g., BYOL, SimCLR) lack interpretability, we uniquely combine DINOv2 with ViT-CX, a causal explanation method tailored for transformers. This provides clinically actionable heatmaps, revealing how the model localizes tumors/cellular patternsa feature absent in prior SSL medical imaging studies Furthermore, our research explores the impact of semantic search in the medical images domain and how it can revolutionize the querying process and provide semantic results alongside SSL and the Qudra Net dataset utilized to save the embedding of the developed model after the training process. Cosine similarity measures the distance between the image query and stored information in the embedding using cosine similarity. Our study aims to enhance the efficiency and accuracy of medical image analysis, ultimately improving the decision-making process.
Page 19 of 99982 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.