Sort by:
Page 19 of 91907 results

FaRMamba: Frequency-based learning and Reconstruction aided Mamba for Medical Segmentation

Ze Rong, ZiYue Zhao, Zhaoxin Wang, Lei Ma

arxiv logopreprintJul 26 2025
Accurate medical image segmentation remains challenging due to blurred lesion boundaries (LBA), loss of high-frequency details (LHD), and difficulty in modeling long-range anatomical structures (DC-LRSS). Vision Mamba employs one-dimensional causal state-space recurrence to efficiently model global dependencies, thereby substantially mitigating DC-LRSS. However, its patch tokenization and 1D serialization disrupt local pixel adjacency and impose a low-pass filtering effect, resulting in Local High-frequency Information Capture Deficiency (LHICD) and two-dimensional Spatial Structure Degradation (2D-SSD), which in turn exacerbate LBA and LHD. In this work, we propose FaRMamba, a novel extension that explicitly addresses LHICD and 2D-SSD through two complementary modules. A Multi-Scale Frequency Transform Module (MSFM) restores attenuated high-frequency cues by isolating and reconstructing multi-band spectra via wavelet, cosine, and Fourier transforms. A Self-Supervised Reconstruction Auxiliary Encoder (SSRAE) enforces pixel-level reconstruction on the shared Mamba encoder to recover full 2D spatial correlations, enhancing both fine textures and global context. Extensive evaluations on CAMUS echocardiography, MRI-based Mouse-cochlea, and Kvasir-Seg endoscopy demonstrate that FaRMamba consistently outperforms competitive CNN-Transformer hybrids and existing Mamba variants, delivering superior boundary accuracy, detail preservation, and global coherence without prohibitive computational overhead. This work provides a flexible frequency-aware framework for future segmentation models that directly mitigates core challenges in medical imaging.

CLT-MambaSeg: An integrated model of Convolution, Linear Transformer and Multiscale Mamba for medical image segmentation.

Uppal D, Prakash S

pubmed logopapersJul 26 2025
Recent advances in deep learning have significantly enhanced the performance of medical image segmentation. However, maintaining a balanced integration of feature localization, global context modeling, and computational efficiency remains a critical research challenge. Convolutional Neural Networks (CNNs) effectively capture fine-grained local features through hierarchical convolutions; however, they often struggle to model long-range dependencies due to their limited receptive field. Transformers address this limitation by leveraging self-attention mechanisms to capture global context, but they are computationally intensive and require large-scale data for effective training. The Mamba architecture has emerged as a promising approach, effectively capturing long-range dependencies while maintaining low computational overhead and high segmentation accuracy. Based on this, we propose a method named CLT-MambaSeg that integrates Convolution, Linear Transformer, and Multiscale Mamba architectures to capture local features, model global context, and improve computational efficiency for medical image segmentation. It utilizes a convolution-based Spatial Representation Extraction (SREx) module to capture intricate spatial relationships and dependencies. Further, it comprises a Mamba Vision Linear Transformer (MVLTrans) module to capture multiscale context, spatial and sequential dependencies, and enhanced global context. In addition, to address the problem of limited data, we propose a novel Memory-Guided Augmentation Generative Adversarial Network (MeGA-GAN) that generates synthetic realistic images to further enhance the segmentation performance. We conduct extensive experiments and ablation studies on the five benchmark datasets, namely CVC-ClinicDB, Breast UltraSound Images (BUSI), PH2, and two datasets from the International Skin Imaging Collaboration (ISIC), namely ISIC-2016 and ISIC-2017. Experimental results demonstrate the efficacy of the proposed CLT-MambaSeg compared to other state-of-the-art methods.

Artificial intelligence-assisted compressed sensing CINE enhances the workflow of cardiac magnetic resonance in challenging patients.

Wang H, Schmieder A, Watkins M, Wang P, Mitchell J, Qamer SZ, Lanza G

pubmed logopapersJul 26 2025
A key cardiac magnetic resonance (CMR) challenge is breath-holding duration, difficult for cardiac patients. To evaluate whether artificial intelligence-assisted compressed sensing CINE (AI-CS-CINE) reduces image acquisition time of CMR compared to conventional CINE (C-CINE). Cardio-oncology patients (<i>n</i> = 60) and healthy volunteers (<i>n</i> = 29) underwent sequential C-CINE and AI-CS-CINE with a 1.5-T scanner. Acquisition time, visual image quality assessment, and biventricular metrics (end-diastolic volume, end-systolic volume, stroke volume, ejection fraction, left ventricular mass, and wall thickness) were analyzed and compared between C-CINE and AI-CS-CINE with Bland-Altman analysis, and calculation of intraclass coefficient (ICC). In 89 participants (58.5 ± 16.8 years, 42 males, 47 females), total AI-CS-CINE acquisition and reconstruction time (37 seconds) was 84% faster than C-CINE (238 seconds). C-CINE required repeats in 23% (20/89) of cases (approximately 8 minutes lost), while AI-CS-CINE only needed one repeat (1%; 2 seconds lost). AI-CS-CINE had slightly lower contrast but preserved structural clarity. Bland-Altman plots and ICC (0.73 ≤ <i>r</i> ≤ 0.98) showed strong agreement for left ventricle (LV) and right ventricle (RV) metrics, including those in the cardiac amyloidosis subgroup (<i>n</i> = 31). AI-CS-CINE enabled faster, easier imaging in patients with claustrophobia, dyspnea, arrhythmias, or restlessness. Motion-artifacted C-CINE images were reliably interpreted from AI-CS-CINE. AI-CS-CINE accelerated CMR image acquisition and reconstruction, preserved anatomical detail, and diminished impact of patient-related motion. Quantitative AI-CS-CINE metrics agreed closely with C-CINE in cardio-oncology patients, including the cardiac amyloidosis cohort, as well as healthy volunteers regardless of left and right ventricular size and function. AI-CS-CINE significantly enhanced CMR workflow, particularly in challenging cases. The strong analytical concordance underscores reliability and robustness of AI-CS-CINE as a valuable tool.

Synomaly noise and multi-stage diffusion: A novel approach for unsupervised anomaly detection in medical images.

Bi Y, Huang L, Clarenbach R, Ghotbi R, Karlas A, Navab N, Jiang Z

pubmed logopapersJul 26 2025
Anomaly detection in medical imaging plays a crucial role in identifying pathological regions across various imaging modalities, such as brain MRI, liver CT, and carotid ultrasound (US). However, training fully supervised segmentation models is often hindered by the scarcity of expert annotations and the complexity of diverse anatomical structures. To address these issues, we propose a novel unsupervised anomaly detection framework based on a diffusion model that incorporates a synthetic anomaly (Synomaly) noise function and a multi-stage diffusion process. Synomaly noise introduces synthetic anomalies into healthy images during training, allowing the model to effectively learn anomaly removal. The multi-stage diffusion process is introduced to progressively denoise images, preserving fine details while improving the quality of anomaly-free reconstructions. The generated high-fidelity counterfactual healthy images can further enhance the interpretability of the segmentation models, as well as provide a reliable baseline for evaluating the extent of anomalies and supporting clinical decision-making. Notably, the unsupervised anomaly detection model is trained purely on healthy images, eliminating the need for anomalous training samples and pixel-level annotations. We validate the proposed approach on brain MRI, liver CT datasets, and carotid US. The experimental results demonstrate that the proposed framework outperforms existing state-of-the-art unsupervised anomaly detection methods, achieving performance comparable to fully supervised segmentation models in the US dataset. Ablation studies further highlight the contributions of Synomaly noise and the multi-stage diffusion process in improving anomaly segmentation. These findings underscore the potential of our approach as a robust and annotation-efficient alternative for medical anomaly detection. Code:https://github.com/yuan-12138/Synomaly.

Artificial intelligence-powered software outperforms interventional cardiologists in assessment of IVUS-based stent optimization.

Rubio PM, Garcia-Garcia HM, Galo J, Chaturvedi A, Case BC, Mintz GS, Ben-Dor I, Hashim H, Waksman R

pubmed logopapersJul 26 2025
Optimal stent deployment assessed by intravascular ultrasound (IVUS) is associated with improved outcomes after percutaneous coronary intervention (PCI). However, IVUS remains underutilized due to its time-consuming analysis and reliance on operator expertise. AVVIGO™+, an FDA-approved artificial intelligence (AI) software, offers automated lesion assessment, but its performance for stent evaluation has not been thoroughly investigated. To assess whether an artificial intelligence-powered software (AVVIGO™+) provides a superior evaluation of IVUS-based stent expansion index (%Stent expansion = Minimum Stent Area (MSA) / Distal reference lumen area) and geographic miss (i.e. >50 % plaque burden - PB - at stent edges) compared to the current gold standard method performed by interventional cardiologists (IC), defined as frame-by-frame visual assessment by interventional cardiologists, selecting the MSA and the reference frame with the largest lumen area within 5 mm of the stent edge, following expert consensus. This retrospective study included 60 patients (47,997 IVUS frames) who underwent IVUS guided PCI, independently analyzed by IC and AVVIGO™+. Assessments included minimum stent area (MSA), stent expansion index, and PB at proximal and distal reference segments. For expansion, a threshold of 80 % was used to define suboptimal results. The time required for expansion analysis was recorded for both methods. Concordance, absolute and relative differences were evaluated. AVVIGO™ + consistently identified lower mean expansion (70.3 %) vs. IC (91.2 %), (p < 0.0001), primarily due to detecting frames with smaller MSA values (5.94 vs. 7.19 mm<sup>2</sup>, p = 0.0053). This led to 25 discordant cases in which AVVIGO™ + reported suboptimal expansion while IC classified the result as adequate. The analysis time was significantly shorter with AVVIGO™ + (0.76 ± 0.39 min) vs IC (1.89 ± 0.62 min) (p < 0.0001), representing a 59.7 % reduction. For geographic miss, AVVIGO™ + reported higher PB than IC at both distal (51.8 % vs. 43.0 %, p < 0.0001) and proximal (50.0 % vs. 43.0 %, p = 0.0083) segments. When applying the 50 % PB threshold, AVVIGO™ + identified PB ≥50 % not seen by IC in 12 cases (6 distal, 6 proximal). AVVIGO™ + demonstrated improved detection of suboptimal stent expansion and geographic miss compared to interventional cardiologists, while also significantly reducing analysis time. These findings suggest that AI-based platforms may offer a more reliable and efficient approach to IVUS-guided stent optimization, with potential to enhance consistency in clinical practice.

Reconstruct or Generate: Exploring the Spectrum of Generative Modeling for Cardiac MRI

Niklas Bubeck, Yundi Zhang, Suprosanna Shit, Daniel Rueckert, Jiazhen Pan

arxiv logopreprintJul 25 2025
In medical imaging, generative models are increasingly relied upon for two distinct but equally critical tasks: reconstruction, where the goal is to restore medical imaging (usually inverse problems like inpainting or superresolution), and generation, where synthetic data is created to augment datasets or carry out counterfactual analysis. Despite shared architecture and learning frameworks, they prioritize different goals: generation seeks high perceptual quality and diversity, while reconstruction focuses on data fidelity and faithfulness. In this work, we introduce a "generative model zoo" and systematically analyze how modern latent diffusion models and autoregressive models navigate the reconstruction-generation spectrum. We benchmark a suite of generative models across representative cardiac medical imaging tasks, focusing on image inpainting with varying masking ratios and sampling strategies, as well as unconditional image generation. Our findings show that diffusion models offer superior perceptual quality for unconditional generation but tend to hallucinate as masking ratios increase, whereas autoregressive models maintain stable perceptual performance across masking levels, albeit with generally lower fidelity.

Extreme Cardiac MRI Analysis under Respiratory Motion: Results of the CMRxMotion Challenge

Kang Wang, Chen Qin, Zhang Shi, Haoran Wang, Xiwen Zhang, Chen Chen, Cheng Ouyang, Chengliang Dai, Yuanhan Mo, Chenchen Dai, Xutong Kuang, Ruizhe Li, Xin Chen, Xiuzheng Yue, Song Tian, Alejandro Mora-Rubio, Kumaradevan Punithakumar, Shizhan Gong, Qi Dou, Sina Amirrajab, Yasmina Al Khalil, Cian M. Scannell, Lexiaozi Fan, Huili Yang, Xiaowu Sun, Rob van der Geest, Tewodros Weldebirhan Arega, Fabrice Meriaudeau, Caner Özer, Amin Ranem, John Kalkhof, İlkay Öksüz, Anirban Mukhopadhyay, Abdul Qayyum, Moona Mazher, Steven A Niederer, Carles Garcia-Cabrera, Eric Arazo, Michal K. Grzeszczyk, Szymon Płotka, Wanqin Ma, Xiaomeng Li, Rongjun Ge, Yongqing Kou, Xinrong Chen, He Wang, Chengyan Wang, Wenjia Bai, Shuo Wang

arxiv logopreprintJul 25 2025
Deep learning models have achieved state-of-the-art performance in automated Cardiac Magnetic Resonance (CMR) analysis. However, the efficacy of these models is highly dependent on the availability of high-quality, artifact-free images. In clinical practice, CMR acquisitions are frequently degraded by respiratory motion, yet the robustness of deep learning models against such artifacts remains an underexplored problem. To promote research in this domain, we organized the MICCAI CMRxMotion challenge. We curated and publicly released a dataset of 320 CMR cine series from 40 healthy volunteers who performed specific breathing protocols to induce a controlled spectrum of motion artifacts. The challenge comprised two tasks: 1) automated image quality assessment to classify images based on motion severity, and 2) robust myocardial segmentation in the presence of motion artifacts. A total of 22 algorithms were submitted and evaluated on the two designated tasks. This paper presents a comprehensive overview of the challenge design and dataset, reports the evaluation results for the top-performing methods, and further investigates the impact of motion artifacts on five clinically relevant biomarkers. All resources and code are publicly available at: https://github.com/CMRxMotion

SP-Mamba: Spatial-Perception State Space Model for Unsupervised Medical Anomaly Detection

Rui Pan, Ruiying Lu

arxiv logopreprintJul 25 2025
Radiography imaging protocols target on specific anatomical regions, resulting in highly consistent images with recurrent structural patterns across patients. Recent advances in medical anomaly detection have demonstrated the effectiveness of CNN- and transformer-based approaches. However, CNNs exhibit limitations in capturing long-range dependencies, while transformers suffer from quadratic computational complexity. In contrast, Mamba-based models, leveraging superior long-range modeling, structural feature extraction, and linear computational efficiency, have emerged as a promising alternative. To capitalize on the inherent structural regularity of medical images, this study introduces SP-Mamba, a spatial-perception Mamba framework for unsupervised medical anomaly detection. The window-sliding prototype learning and Circular-Hilbert scanning-based Mamba are introduced to better exploit consistent anatomical patterns and leverage spatial information for medical anomaly detection. Furthermore, we excavate the concentration and contrast characteristics of anomaly maps for improving anomaly detection. Extensive experiments on three diverse medical anomaly detection benchmarks confirm the proposed method's state-of-the-art performance, validating its efficacy and robustness. The code is available at https://github.com/Ray-RuiPan/SP-Mamba.

MedIQA: A Scalable Foundation Model for Prompt-Driven Medical Image Quality Assessment

Siyi Xun, Yue Sun, Jingkun Chen, Zitong Yu, Tong Tong, Xiaohong Liu, Mingxiang Wu, Tao Tan

arxiv logopreprintJul 25 2025
Rapid advances in medical imaging technology underscore the critical need for precise and automated image quality assessment (IQA) to ensure diagnostic accuracy. Existing medical IQA methods, however, struggle to generalize across diverse modalities and clinical scenarios. In response, we introduce MedIQA, the first comprehensive foundation model for medical IQA, designed to handle variability in image dimensions, modalities, anatomical regions, and types. We developed a large-scale multi-modality dataset with plentiful manually annotated quality scores to support this. Our model integrates a salient slice assessment module to focus on diagnostically relevant regions feature retrieval and employs an automatic prompt strategy that aligns upstream physical parameter pre-training with downstream expert annotation fine-tuning. Extensive experiments demonstrate that MedIQA significantly outperforms baselines in multiple downstream tasks, establishing a scalable framework for medical IQA and advancing diagnostic workflows and clinical decision-making.

PerioDet: Large-Scale Panoramic Radiograph Benchmark for Clinical-Oriented Apical Periodontitis Detection

Xiaocheng Fang, Jieyi Cai, Huanyu Liu, Chengju Zhou, Minhua Lu, Bingzhi Chen

arxiv logopreprintJul 25 2025
Apical periodontitis is a prevalent oral pathology that presents significant public health challenges. Despite advances in automated diagnostic systems across various medical fields, the development of Computer-Aided Diagnosis (CAD) applications for apical periodontitis is still constrained by the lack of a large-scale, high-quality annotated dataset. To address this issue, we release a large-scale panoramic radiograph benchmark called "PerioXrays", comprising 3,673 images and 5,662 meticulously annotated instances of apical periodontitis. To the best of our knowledge, this is the first benchmark dataset for automated apical periodontitis diagnosis. This paper further proposes a clinical-oriented apical periodontitis detection (PerioDet) paradigm, which jointly incorporates Background-Denoising Attention (BDA) and IoU-Dynamic Calibration (IDC) mechanisms to address the challenges posed by background noise and small targets in automated detection. Extensive experiments on the PerioXrays dataset demonstrate the superiority of PerioDet in advancing automated apical periodontitis detection. Additionally, a well-designed human-computer collaborative experiment underscores the clinical applicability of our method as an auxiliary diagnostic tool for professional dentists.
Page 19 of 91907 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.