MDFNet: a multi-dimensional feature fusion model based on structural magnetic resonance imaging representations for brain age estimation.
Authors
Affiliations (4)
Affiliations (4)
- School of Computer and Control Engineering, Yantai University, No. 30, Qingquan Road, Laishan District, Yantai City, 264005, Shandong Province, China.
- School of Medical Imaging, Shandong Second Medical University, Weifang, 261053, China.
- School of Computer and Control Engineering, Yantai University, No. 30, Qingquan Road, Laishan District, Yantai City, 264005, Shandong Province, China. [email protected].
- School of Computer and Control Engineering, Yantai University, No. 30, Qingquan Road, Laishan District, Yantai City, 264005, Shandong Province, China. [email protected].
Abstract
Brain age estimation plays a significant role in understanding the aging process and its relationship with neurodegenerative diseases. The aim of the study is to devise a unified multi-dimensional feature fusion model (MDFNet) to enhance the brain age estimation solely on structural MRI but with a diverse representation of whole brain, tissue segmentation of gray matter volume, node message passing of brain network, edge-based graph path convolution of brain connectivity, and demographic data. The MDFNet was developed by devising and integrating a whole-brain-level Euclidean-Convolution channel (WBEC-channel), a tissue-level Euclidean-convolution channel (TEC-channel), a Graph-convolution channel based on node message passing (nodeGCN-channel) and an edge-based graph path convolution channel on brain connectivity (edgeGCN-channel), and a multilayer perceptron (MLP) channel for demographic data (MLP-channel) to enhance the multi-dimensional feature fusion. The MDFNet was validated on 1872 healthy subjects from four public datasets, and applied to an independent cohort of Alzheimer's Disease (AD) patients. The interpretability analysis and normative modeling of the MDFNet in brain age estimation were also performed. The MDFNet achieved a superior performance of Mean Absolute Error (MAE) of 4.396 ± 0.244 years, a Pearson Correlation Coefficient (PCC) of 0.912 ± 0.002, and a Spearman's Rank Correlation (SRCC) of 0.819 ± 0.015 when comparing with the state-of-the-art deep learning models. The AD group exhibited a significantly greater brain age gap (BAG) than health group (P < 0.05), and the normative modeling also exhibited a significantly higher mean Z-scores of AD patients than healthy subjects (P < 0.05). The interpretability was also visualized at both the group and individual level, enhancing the reliability of the MDFNet. The MDFNet enhanced the brain age estimation solely on structural MRI by employing a multi-dimensional feature integration strategy.