Sort by:
Page 188 of 2352345 results

DCE-MRI based deep learning analysis of intratumoral subregion for predicting Ki-67 expression level in breast cancer.

Ding Z, Zhang C, Xia C, Yao Q, Wei Y, Zhang X, Zhao N, Wang X, Shi S

pubmed logopapersJun 1 2025
To evaluate whether deep learning (DL) analysis of intratumor subregion based on dynamic contrast-enhanced MRI (DCE-MRI) can help predict Ki-67 expression level in breast cancer. A total of 290 breast cancer patients from two hospitals were retrospectively collected. A k-means clustering algorithm confirmed subregions of tumor. DL features of whole tumor and subregions were extracted from DCE-MRI images based on 3D ResNet18 pre-trained model. The logistic regression model was constructed after dimension reduction. Model performance was assessed using the area under the curve (AUC), and clinical value was demonstrated through decision curve analysis (DCA). The k-means clustering method clustered the tumor into two subregions (habitat 1 and habitat 2) based on voxel values. Both the habitat 1 model (validation set: AUC = 0.771, 95 %CI: 0.642-0.900 and external test set: AUC = 0.794, 95 %CI: 0.696-0.891) and the habitat 2 model (AUC = 0.734, 95 %CI: 0.605-0.862 and AUC = 0.756, 95 %CI: 0.646-0.866) showed better predictive capabilities for Ki-67 expression level than the whole tumor model (AUC = 0.686, 95 %CI: 0.550-0.823 and AUC = 0.680, 95 %CI: 0.555-0.804). The combined model based on the two subregions further enhanced the predictive capability (AUC = 0.808, 95 %CI: 0.696-0.921 and AUC = 0.842, 95 %CI: 0.758-0.926), and it demonstrated higher clinical value than other models in DCA. The deep learning model derived from subregion of tumor showed better performance for predicting Ki-67 expression level in breast cancer patients. Additionally, the model that integrated two subregions further enhanced the predictive performance.

Prediction of lymph node metastasis in papillary thyroid carcinoma using non-contrast CT-based radiomics and deep learning with thyroid lobe segmentation: A dual-center study.

Wang H, Wang X, Du Y, Wang Y, Bai Z, Wu D, Tang W, Zeng H, Tao J, He J

pubmed logopapersJun 1 2025
This study aimed to develop a predictive model for lymph node metastasis (LNM) in papillary thyroid carcinoma (PTC) patients by deep learning radiomic (DLRad) and clinical features. This study included 271 thyroid lobes from 228 PTC patients who underwent preoperative neck non-contrast CT at Center 1 (May 2021-April 2024). LNM status was confirmed via postoperative pathology, with each thyroid lobe labeled accordingly. The cohort was divided into training (n = 189) and validation (n = 82) cohorts, with additional temporal (n = 59 lobes, Center 1, May-August 2024) and external (n = 66 lobes, Center 2) test cohorts. Thyroid lobes were manually segmented from the isthmus midline, ensuring interobserver consistency (ICC ≥ 0.8). Deep learning and radiomics features were selected using LASSO algorithms to compute DLRad scores. Logistic regression identified independent predictors, forming DLRad, clinical, and combined models. Model performance was evaluated using AUC, calibration, decision curves, and the DeLong test, compared against radiologists' assessments. Independent predictors of LNM included age, gender, multiple nodules, tumor size group, and DLRad. The combined model demonstrated superior diagnostic performance with AUCs of 0.830 (training), 0.799 (validation), 0.819 (temporal test), and 0.756 (external test), outperforming the DLRad model (AUCs: 0.786, 0.730, 0.753, 0.642), clinical model (AUCs: 0.723, 0.745, 0.671, 0.660), and radiologist evaluations (AUCs: 0.529, 0.606, 0.620, 0.503). It also achieved the lowest Brier scores (0.167, 0.184, 0.175, 0.201) and the highest net benefit in decision-curve analysis at threshold probabilities > 20 %. The combined model integrating DLRad and clinical features exhibits good performance in predicting LNM in PTC patients.

Exploring the significance of the frontal lobe for diagnosis of schizophrenia using explainable artificial intelligence and group level analysis.

Varaprasad SA, Goel T

pubmed logopapersJun 1 2025
Schizophrenia (SZ) is a complex mental disorder characterized by a profound disruption in cognition and emotion, often resulting in a distorted perception of reality. Magnetic resonance imaging (MRI) is an essential tool for diagnosing SZ which helps to understand the organization of the brain. Functional MRI (fMRI) is a specialized imaging technique to measure and map brain activity by detecting changes in blood flow and oxygenation. The proposed paper correlates the results using an explainable deep learning approach to identify the significant regions of SZ patients using group-level analysis for both structural MRI (sMRI) and fMRI data. The study found that the heat maps for Grad-CAM show clear visualization in the frontal lobe for the classification of SZ and CN with a 97.33% accuracy. The group difference analysis reveals that sMRI data shows intense voxel activity in the right superior frontal gyrus of the frontal lobe in SZ patients. Also, the group difference between SZ and CN during n-back tasks of fMRI data indicates significant voxel activation in the frontal cortex of the frontal lobe. These findings suggest that the frontal lobe plays a crucial role in the diagnosis of SZ, aiding clinicians in planning the treatment.

Optimized attention-enhanced U-Net for autism detection and region localization in MRI.

K VRP, Bindu CH, Rama Devi K

pubmed logopapersJun 1 2025
Autism spectrum disorder (ASD) is a neurodevelopmental condition that affects a child's cognitive and social skills, often diagnosed only after symptoms appear around age 2. Leveraging MRI for early ASD detection can improve intervention outcomes. This study proposes a framework for autism detection and region localization using an optimized deep learning approach with attention mechanisms. The pipeline includes MRI image collection, pre-processing (bias field correction, histogram equalization, artifact removal, and non-local mean filtering), and autism classification with a Symmetric Structured MobileNet with Attention Mechanism (SSM-AM). Enhanced by Refreshing Awareness-aided Election-Based Optimization (RA-EBO), SSM-AM achieves robust classification. Abnormality region localization utilizes a Multiscale Dilated Attention-based Adaptive U-Net (MDA-AUnet) further optimized by RA-EBO. Experimental results demonstrate that our proposed model outperforms existing methods, achieving an accuracy of 97.29%, sensitivity of 97.27%, specificity of 97.36%, and precision of 98.98%, significantly improving classification and localization performance. These results highlight the potential of our approach for early ASD diagnosis and targeted interventions. The datasets utilized for this work are publicly available at https://fcon_1000.projects.nitrc.org/indi/abide/.

CT-derived fractional flow reserve on therapeutic management and outcomes compared with coronary CT angiography in coronary artery disease.

Qian Y, Chen M, Hu C, Wang X

pubmed logopapersJun 1 2025
To determine the value of on-site deep learning-based CT-derived fractional flow reserve (CT-FFR) for therapeutic management and adverse clinical outcomes in patients suspected of coronary artery disease (CAD) compared with coronary CT angiography (CCTA) alone. This single-centre prospective study included consecutive patients suspected of CAD between June 2021 and September 2021 at our hospital. Four hundred and sixty-one patients were randomized into either CT-FFR+CCTA or CCTA-alone group. The first endpoint was the invasive coronary angiography (ICA) efficiency, defined as the ICA with nonobstructive disease (stenosis <50%) and the ratio of revascularization to ICA (REV-to-ICA ratio) within 90 days. The second endpoint was the incidence of major adverse cardiaovascular events (MACE) at 2 years. A total of 461 patients (267 [57.9%] men; median age, 64 [55-69]) were included. At 90 days, the rate of ICA with nonobstructive disease in the CT-FFR+CCTA group was lower than in the CCTA group (14.7% vs 34.0%, P=.047). The REV-to-ICA ratio in the CT-FFR+CCTA group was significantly higher than in the CCTA group (73.5% vs. 50.9%, P=.036). No significant difference in ICA efficiency was found in intermediate stenosis (25%-69%) between the 2 groups (all P>.05). After a median follow-up of 23 (22-24) months, MACE were observed in 11 patients in the CT-FFR+CCTA group and 24 in the CCTA group (5.9% vs 10.0%, P=.095). The on-site deep learning-based CT-FFR improved the efficiency of ICA utilization with a similarly low rate of MACE compared with CCTA alone. The on-site deep learning-based CT-FFR was superior to CCTA for therapeutic management.

Beyond traditional orthopaedic data analysis: AI, multimodal models and continuous monitoring.

Oettl FC, Zsidai B, Oeding JF, Hirschmann MT, Feldt R, Tischer T, Samuelsson K

pubmed logopapersJun 1 2025
Multimodal artificial intelligence (AI) has the potential to revolutionise healthcare by enabling the simultaneous processing and integration of various data types, including medical imaging, electronic health records, genomic information and real-time data. This review explores the current applications and future potential of multimodal AI across healthcare, with a particular focus on orthopaedic surgery. In presurgical planning, multimodal AI has demonstrated significant improvements in diagnostic accuracy and risk prediction, with studies reporting an Area under the receiving operator curve presenting good to excellent performance across various orthopaedic conditions. Intraoperative applications leverage advanced imaging and tracking technologies to enhance surgical precision, while postoperative care has been advanced through continuous patient monitoring and early detection of complications. Despite these advances, significant challenges remain in data integration, standardisation, and privacy protection. Technical solutions such as federated learning (allowing decentralisation of models) and edge computing (allowing data analysis to happen on site or closer to site instead of multipurpose datacenters) are being developed to address these concerns while maintaining compliance with regulatory frameworks. As this field continues to evolve, the integration of multimodal AI promises to advance personalised medicine, improve patient outcomes, and transform healthcare delivery through more comprehensive and nuanced analysis of patient data. Level of Evidence: Level V.

PET and CT based DenseNet outperforms advanced deep learning models for outcome prediction of oropharyngeal cancer.

Ma B, Guo J, Dijk LVV, Langendijk JA, Ooijen PMAV, Both S, Sijtsema NM

pubmed logopapersJun 1 2025
In the HECKTOR 2022 challenge set [1], several state-of-the-art (SOTA, achieving best performance) deep learning models were introduced for predicting recurrence-free period (RFP) in head and neck cancer patients using PET and CT images. This study investigates whether a conventional DenseNet architecture, with optimized numbers of layers and image-fusion strategies, could achieve comparable performance as SOTA models. The HECKTOR 2022 dataset comprises 489 oropharyngeal cancer (OPC) patients from seven distinct centers. It was randomly divided into a training set (n = 369) and an independent test set (n = 120). Furthermore, an additional dataset of 400 OPC patients, who underwent chemo(radiotherapy) at our center, was employed for external testing. Each patients' data included pre-treatment CT- and PET-scans, manually generated GTV (Gross tumour volume) contours for primary tumors and lymph nodes, and RFP information. The present study compared the performance of DenseNet against three SOTA models developed on the HECKTOR 2022 dataset. When inputting CT, PET and GTV using the early fusion (considering them as different channels of input) approach, DenseNet81 (with 81 layers) obtained an internal test C-index of 0.69, a performance metric comparable with SOTA models. Notably, the removal of GTV from the input data yielded the same internal test C-index of 0.69 while improving the external test C-index from 0.59 to 0.63. Furthermore, compared to PET-only models, when utilizing the late fusion (concatenation of extracted features) with CT and PET, DenseNet81 demonstrated superior C-index values of 0.68 and 0.66 in both internal and external test sets, while using early fusion was better in only the internal test set. The basic DenseNet architecture with 81 layers demonstrated a predictive performance on par with SOTA models featuring more intricate architectures in the internal test set, and better performance in the external test. The late fusion of CT and PET imaging data yielded superior performance in the external test.

A radiomics model combining machine learning and neural networks for high-accuracy prediction of cervical lymph node metastasis on ultrasound of head and neck squamous cell carcinoma.

Fukuda M, Eida S, Katayama I, Takagi Y, Sasaki M, Sumi M, Ariji Y

pubmed logopapersJun 1 2025
This study aimed to develop an ultrasound image-based radiomics model for diagnosing cervical lymph node (LN) metastasis in patients with head and neck squamous cell carcinoma (HNSCC) that shows higher accuracy than previous models. A total of 537 LN (260 metastatic and 277 nonmetastatic) from 126 patients (78 men, 48 women, average age 63 years) were enrolled. The multivariate analysis software Prediction One (Sony Network Communications Corporation) was used to create the diagnostic models. Furthermore, three machine learning methods were adopted as comparison approaches. Based on a combination of texture analysis results, clinical information, and ultrasound findings interpretated by specialists, a total of 12 models were created, three for each machine learning method, and their diagnostic performance was compared. The three best models had area under the curve of 0.98. Parameters related to ultrasound findings, such as presence of a hilum, echogenicity, and granular parenchymal echoes, showed particularly high contributions. Other significant contributors were those from texture analysis that indicated the minimum pixel value, number of contiguous pixels with the same echogenicity, and uniformity of gray levels. The radiomics model developed was able to accurately diagnose cervical LN metastasis in HNSCC.

The integration of artificial intelligence into clinical medicine: Trends, challenges, and future directions.

Aravazhi PS, Gunasekaran P, Benjamin NZY, Thai A, Chandrasekar KK, Kolanu ND, Prajjwal P, Tekuru Y, Brito LV, Inban P

pubmed logopapersJun 1 2025
AI has emerged as a transformative force in clinical medicine, changing the diagnosis, treatment, and management of patients. Tools have been derived for working with ML, DL, and NLP algorithms to analyze large complex medical datasets with unprecedented accuracy and speed, thereby improving diagnostic precision, treatment personalization, and patient care outcomes. For example, CNNs have dramatically improved the accuracy of medical imaging diagnoses, and NLP algorithms have greatly helped extract insights from unstructured data, including EHRs. However, there are still numerous challenges that face AI integration into clinical workflows, including data privacy, algorithmic bias, ethical dilemmas, and problems with the interpretability of "black-box" AI models. These barriers have thus far prevented the widespread application of AI in health care, and its possible trends, obstacles, and future implications are necessary to be systematically explored. The purpose of this paper is, therefore, to assess the current trends in AI applications in clinical medicine, identify those obstacles that are hindering adoption, and identify possible future directions. This research hopes to synthesize evidence from other peer-reviewed articles to provide a more comprehensive understanding of the role that AI plays to advance clinical practices, improve patient outcomes, or enhance decision-making. A systematic review was done according to the PRISMA guidelines to explore the integration of Artificial Intelligence in clinical medicine, including trends, challenges, and future directions. PubMed, Cochrane Library, Web of Science, and Scopus databases were searched for peer-reviewed articles from 2014 to 2024 with keywords such as "Artificial Intelligence in Medicine," "AI in Clinical Practice," "Machine Learning in Healthcare," and "Ethical Implications of AI in Medicine." Studies focusing on AI application in diagnostics, treatment planning, and patient care reporting measurable clinical outcomes were included. Non-clinical AI applications and articles published before 2014 were excluded. Selected studies were screened for relevance, and then their quality was critically appraised to synthesize data reliably and rigorously. This systematic review includes the findings of 8 studies that pointed out the transformational role of AI in clinical medicine. AI tools, such as CNNs, had diagnostic accuracy more than the traditional methods, particularly in radiology and pathology. Predictive models efficiently supported risk stratification, early disease detection, and personalized medicine. Despite these improvements, significant hurdles, including data privacy, algorithmic bias, and resistance from clinicians regarding the "black-box" nature of AI, had yet to be surmounted. XAI has emerged as an attractive solution that offers the promise to enhance interpretability and trust. As a whole, AI appeared promising in enhancing diagnostics, treatment personalization, and clinical workflows by dealing with systemic inefficiencies. The transformation potential of AI in clinical medicine can transform diagnostics, treatment strategies, and efficiency. Overcoming obstacles such as concerns about data privacy, the danger of algorithmic bias, and difficulties with interpretability may pave the way for broader use and facilitate improvement in patient outcomes while transforming clinical workflows to bring sustainability into healthcare delivery.

Machine Learning Models in the Detection of MB2 Canal Orifice in CBCT Images.

Shetty S, Yuvali M, Ozsahin I, Al-Bayatti S, Narasimhan S, Alsaegh M, Al-Daghestani H, Shetty R, Castelino R, David LR, Ozsahin DU

pubmed logopapersJun 1 2025
The objective of the present study was to determine the accuracy of machine learning (ML) models in the detection of mesiobuccal (MB2) canals in axial cone-beam computed tomography (CBCT) sections. A total of 2500 CBCT scans from the oral radiology department of University Dental Hospital, Sharjah were screened to obtain 277 high-resolution, small field-of-view CBCT scans with maxillary molars. Among the 277 scans, 160 of them showed the presence of MB2 orifice and the rest (117) did not. Two-dimensional axial images of these scans were then cropped. The images were classified and labelled as N (absence of MB2) and M (presence of MB2) by 2 examiners. The images were embedded using Google's Inception V3 and transferred to the ML classification model. Six different ML models (logistic regression [LR], naïve Bayes [NB], support vector machine [SVM], K-nearest neighbours [Knn], random forest [RF], neural network [NN]) were then tested on their ability to classify the images into M and N. The classification metrics (area under curve [AUC], accuracy, F1-score, precision) of the models were assessed in 3 steps. NN (0.896), LR (0.893), and SVM (0.886) showed the highest values of AUC with specified target variables (steps 2 and 3). The highest accuracy was exhibited by LR (0.849) and NN (0.848) with specified target variables. The highest precision (86.8%) and recall (92.5%) was observed with the SVM model. The success rates (AUC, precision, recall) of ML algorithms in the detection of MB2 were remarkable in our study. It was also observed that when the target variable was specified, significant success rates such as 86.8% in precision and 92.5% in recall were achieved. The present study showed promising results in the ML-based detection of MB2 canal using axial CBCT slices.
Page 188 of 2352345 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.